
computer programs

J. Appl. Cryst. (2021). 54, 1521–1529 https://doi.org/10.1107/S160057672100755X 1521

Received 21 April 2021

Accepted 23 July 2021

Edited by S. Boutet, SLAC National Accelerator

Laboratory, Menlo Park, USA

Keywords: X-ray crystallography; data analysis;

Python.

reciprocalspaceship: a Python library for
crystallographic data analysis

Jack B. Greisman,a Kevin M. Daltona and Doeke R. Hekstraa,b*

aDepartment of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA, and
bJohn A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.

*Correspondence e-mail: doeke_hekstra@harvard.edu

Crystallography uses the diffraction of X-rays, electrons or neutrons by crystals

to provide invaluable data on the atomic structure of matter, from single atoms

to ribosomes. Much of crystallography’s success is due to the software packages

developed to enable automated processing of diffraction data. However, the

analysis of unconventional diffraction experiments can still pose significant

challenges – many existing programs are closed source, sparsely documented, or

challenging to integrate with modern libraries for scientific computing and

machine learning. Described here is reciprocalspaceship, a Python library for

exploring reciprocal space. It provides a tabular representation for reflection

data from diffraction experiments that extends the widely used pandas library

with built-in methods for handling space groups, unit cells and symmetry-based

operations. As is illustrated, this library facilitates new modes of exploratory

data analysis while supporting the prototyping, development and release of new

methods.

1. Introduction

The analysis of most diffraction experiments begins with

processing diffraction images and ends with refining an atomic

model that is consistent with the observed data in order to

answer a scientific question. Numerous software suites and

command-line applications address different stages of the

processing pipeline and these diverse programs are typically

combined to address the challenges of a particular data set

(Adams et al., 2010; Winn et al., 2011; Winter et al., 2018;

Grosse-Kunstleve et al., 2002; Kabsch, 2010a,b; Otwinowski &

Minor, 1997). However, many novel diffraction experiments

do not fit easily into the processing pipelines established

within existing crystallographic software. Such experiments

often require custom scripts and programs to analyze the

resulting data. Recent examples of such experiments include

time-resolved pump–probe experiments that investigate the

structural dynamics within room-temperature crystals

(Hekstra et al., 2016; Dods et al., 2021; Wickstrand et al., 2020)

and new approaches to phasing (Garcia-Bonete & Katona,

2019; Hatti et al., 2021). New software is needed to facilitate

such custom analyses and improve the development, repro-

ducibility and adoption of novel diffraction experiments.

A software library supporting such experiments must

provide built-in methods to handle space groups, unit cells and

symmetry operations. This first requirement is met by several

crystallographic libraries for Python, including the Computa-

tional Crystallography Toolbox (CCTBX) (Grosse-Kunstleve

et al., 2002) and GEMMI (Wojdyr, 2021). However, in our

experience, exploratory analysis of reflection data and the

development of new analysis methods would, in addition,

greatly benefit from seamless integration with existing

ISSN 1600-5767

http://crossmark.crossref.org/dialog/?doi=10.1107/S160057672100755X&domain=pdf&date_stamp=2021-09-04
http://crossmark.crossref.org/dialog/?doi=10.1107%2FS160057672100755X&domain=pdf&date_stamp=2021-09-04

scientific computing software, including NumPy (Harris et al.,

2020) and SciPy (Virtanen et al., 2020). This requirement is not

met by the existing libraries, which use internal data structures

that are not directly compatible with NumPy. As we show

here, meeting this additional requirement enables crystal-

lographers to deploy the rich arsenal of data analysis, statistics

and machine-learning tools developed across other disciplines.

Key to such integration with scientific Python software is

the observation that crystallographic data are inherently

tabular due to Bragg’s law, with each observed reflection

described by a Miller index. This property underlies many of

the file formats for storing diffraction data: integrated inten-

sities and any reflection-specific metadata are typically stored

with the associated Miller index (see Fig. 1). For analysis

in Python, tabular data are commonly represented using

the pandas software library (Reback et al., 2021).

pandas.DataFrame objects provide support for the arbi-

trary manipulation of tabular data, storage of heterogeneous

data types, and easy integration with any scientific computing

or machine-learning library that supports NumPy arrays

(Harris et al., 2020).

Because of the tabular nature of crystallographic data and

the widespread use of pandas in data science, we sought to

develop a library that extends the DataFrame for reflection

data by providing built-in support for space groups, unit cells

and symmetry operations. This library, reciprocalspaceship,

can be used to inspect reflection data, to develop new crys-

tallographic methods and to release reproducible analysis

pipelines for diffraction experiments. By embracing the norms

for data science in Python, reciprocalspaceship will enable the

development of new methods by the next generation of

crystallographers.

2. reciprocalspaceship library

2.1. Mission statement

reciprocalspaceship is a free and open-source software

library with the primary goal of simplifying the analysis of

crystallographic data in Python. To achieve this goal, we

sought to design a software library that is intuitive for both

crystallographers and Python programmers. This requires full

support for common crystallographic operations, as well as

easy integration with the scientific computing and machine-

learning libraries that are developed and maintained by the

Python community.

2.2. Design

The DataFrame is the core abstraction in pandas. reci-

procalspaceship provides a DataSet class which extends the

DataFrame, augmenting it to represent reflection data from

diffraction experiments. DataSet objects store reflection

data along with the associated space group and unit cell, and

can be initialized from common reflection file formats such as

MTZ files (Fig. 1). By extending the pandas DataFrame, it is

possible to preserve its core functionality while adding built-in

methods to support common crystallographic operations.

These operations use the GEMMI library to represent space

groups and unit cells (Wojdyr, 2021) and have been vectorized

to increase performance.

This design allows reciprocalspaceship to complement the

functionality of libraries such as GEMMI by providing data

scientists familiar with the Python scientific computing

ecosystem with an interface to reflection data that meets their

expectations. In this way, reciprocalspaceship helps experts

from other fields bring their perspectives and machine-

learning tools to crystallography.

Furthermore, this library supports the use of MTZ files,

allowing users to interface easily with existing and widely used

computational crystallography infrastructure, such as CCTBX

(Grosse-Kunstleve et al., 2002), CCP4 (Winn et al., 2011) and

PHENIX (Adams et al., 2010). To support compatibility with

MTZ files, reciprocalspaceship provides custom data types to

represent different crystallographic data, such as intensities,

structure factor amplitudes or phases. To ensure compatibility

with other Python libraries, these data types are all repre-

sented internally using NumPy arrays of either 32-bit integer

or floating-point values. Methods are also provided for infer-

ring relevant data types based on standard MTZ column labels

used to describe the data. DataSet objects can, moreover,

contain any data type supported by pandas, including generic

Python objects.

2.3. Features

The primary capabilities of this library are provided

through the DataSet object, which builds on the core

features of the pandas DataFrame to provide crystal-

lographic support. DataSet objects can represent both

merged and unmerged reflection data and provide the attri-

butes and methods that are summarized in Table 1.

In addition to the DataSet object, reciprocalspaceship

provides several algorithms that can be used for analysis.

These include merge(), which implements the averaging of

unmerged reflection data using maximum-likelihood weights,

and scale_merged_intensities(), which implements

computer programs

1522 Jack B. Greisman et al. � reciprocalspaceship J. Appl. Cryst. (2021). 54, 1521–1529

Figure 1
A screenshot demonstrating the use of reciprocalspaceship in a Jupyter
notebook. DataSet objects can be used to represent reflection data with
associated unit-cell and space-group information.

the French–Wilson algorithm to account for negative merged

intensities (French & Wilson, 1978). These implementations

can serve as templates for the development of new analysis

methods using reciprocalspaceship. The set of algorithms

offered through this library will continue to expand as users

implement new analyses intended for broader adoption.

2.4. Development and documentation

reciprocalspaceship is maintained on GitHub under a

permissive MIT license in order to foster community invol-

vement in its development, testing and documentation. Every

change to the source code is assessed using an automated

testing suite in order to support continuous integration

(Krekel et al., 2020). reciprocalspaceship is available through

the Python Package Index (PyPI; https://pypi.org/) and can be

installed on most systems using pip. Documentation is auto-

matically generated from the reciprocalspaceship GitHub

repository to ensure up-to-date information is available for

users. The website includes a User Guide section describing

the design and features of reciprocalspaceship and examples

that use the library for crystallographic applications. The

documentation also includes a guide for developers to support

users who wish to contribute new features or methods to the

library. By committing to an open-source development model,

it will be possible to maintain this library to meet the evolving

needs of crystallographers.

3. Examples

The following examples demonstrate the use of reciprocal-

spaceship in the analysis of crystallographic data. These

examples cover the merging of scaled observed intensities,

analyzing anomalous differences from a single-wavelength

anomalous dispersion (SAD) experiment and applying

weights to a time-resolved difference map. These examples are

intended to illustrate the breadth of crystallographic problems

that can be addressed using this library, as well as its seamless

integration with common scientific computing libraries. The

examples are available as interactive Jupyter notebooks

(Kluyver et al., 2016) in the reciprocalspaceship documenta-

tion (https://hekstra-lab.github.io/reciprocalspaceship/userguide/

examples.html).

3.1. Assessing uncertainty in merging statistics

Merging statistics are useful for assessing the internal

consistency of a data set and many different metrics have been

proposed over the years (Weiss, 2001; Karplus & Diederichs,

2012). Although merging statistics are commonly reported by

data reduction pipelines, they are often not reported with

uncertainties and do not always give access to their underlying

parameters, such as the number of resolution bins or the type

of correlation coefficients to report. By facilitating inspection

of the underlying reflection data, reciprocalspaceship can be

used to write quality control scripts to automate analysis

pipelines or, as shown here, for use in the exploratory analysis

of the properties of a single data set. By enabling crystal-

lographers to try new statistical routines, reciprocalspaceship

may help in the development of more robust indicators of data

quality.

To illustrate this, we computed CC1/2 and CCanom for scaled

unmerged reflection data. The data were collected at 6.5 keV

on a tetragonal crystal of hen egg-white lysozyme at ambient

temperature. The integrated intensities were scaled in

AIMLESS and the data contain sufficient anomalous signal

from the native sulfur atoms to determine experimental

phases by the SAD method (Greisman et al., 2021; Adams et

al., 2010; Evans & Murshudov, 2013; Terwilliger et al., 2009).

Using reciprocalspaceship, it is possible to implement a func-

tion that merges redundant observations using inverse-

variance weights [Fig. 2(a)]. This code takes advantage of the

computer programs

J. Appl. Cryst. (2021). 54, 1521–1529 Jack B. Greisman et al. � reciprocalspaceship 1523

Table 1
Core features of reciprocalspaceship.DataSet objects.

Attributes
cell Unit-cell parameters
spacegroup Space-group information
merged Identifier for merged/unmerged data
acentrics Access acentric reflections in DataSet

centrics Access centric reflections in DataSet

Methods
(i) Input/Output
from_gemmi() Create DataSet object from

gemmi.Mtz

to_gemmi() Create gemmi.Mtz object from
DataSet

write_mtz() Write DataSet to an MTZ file

(ii) Symmetry
apply_symop() Apply symmetry operation to reflections

in DataSet

expand_anomalous() Expand data by applying Friedel
operator ðh; k; lÞ

expand_to_p1() Generate all symmetrically equivalent
reflections

hkl_to_asu() Map reflections to reciprocal-space
asymmetric unit

hkl_to_observed() Map reflections to observed Miller
indices

(iii) Annotation
compute_dHKL() Compute the real-space resolution of

each reflection
compute_multiplicity() Compute the multiplicity of each

reflection
label_absences() Label systematically absent reflections
label_centrics() Label centric reflections

(iv) Reshaping
stack_anomalous() Convert anomalous data from two- to

one-column format
to_reciprocalgrid() Convert reflection data to 3D array

populated at Miller indices
unstack_anomalous() Convert anomalous data from one- to

two-column format

(v) Utilities
assign_resolution_bins() Assign reflections in DataSet to reso-

lution bins
canonicalize_phases() Canonicalize all phase data to fall

between [�180, 180) degrees
infer_mtz_dtypes() Infer MTZ dtypes from column names

and underlying data

groupby() functionality inherited from pandas to perform

calculations efficiently on a per-reflection basis (Reback et al.,

2021). By partitioning the observed reflections by image, this

function can be used to merge different sets of observations

independently for computing CC1/2 and CCanom. Due to the

modularity of this workflow, it is possible to repeat the random

partitioning of observations by image to generate uncertainty

estimates and to repeat these calculations using both Pearson

and Spearman correlation coefficients.

As shown in Fig. 2(b), high CC1/2 values indicate that the

resolution was limited by the experimental geometry rather

than the crystal quality, which is common for data collected at

low energy on strongly diffracting crystals. The CCanom values

show that significant anomalous signal was obtained up to the

highest resolution bin. Furthermore, the Spearman correlation

coefficients are systematically higher and have smaller

uncertainties in the low- and intermediate-resolution ranges,

indicating the presence of outliers in the data.

3.2. Merging observations with a robust error model

The difference observed for CCanom between the Pearson

and Spearman correlation coefficients in Fig. 2(b) suggests the

presence of outlier observations, despite the outlier rejection

applied by AIMLESS (Evans & Murshudov, 2013). Since

AIMLESS assumes a normally distributed error model for its

observations, such outliers can have a large impact on esti-

mates of the true merged intensity. We can evaluate whether a

normally distributed error model is appropriate on the basis of

the distribution of residuals between the observed intensities

and the estimate of the true mean (Abrahams & Keve, 1971;

Howell & Smith, 1992). This histogram can be made in just a

few lines of Python by taking advantage of the pandas

indexing approach [Fig. 2(c)]. Compared with the expected

residuals for normally distributed observations, this data set

has significantly heavier tails, with many observations several

standard deviations away from the merged intensity.

The residuals in Fig. 2(c) suggest that merging may be

improved by a more robust error model that can tolerate

outliers. One popular choice of robust error model is the

Student t distribution (Lange et al., 1989). This distribution is

parameterized by a location, a scale and the number of

degrees of freedom, �, which controls the probability of large

deviations from the mean. Importantly, the distribution

approaches the normal distribution as � approaches infinity.

Unlike the normal distribution, though, there is no analytical

computer programs

1524 Jack B. Greisman et al. � reciprocalspaceship J. Appl. Cryst. (2021). 54, 1521–1529

Figure 2
Merging statistics for a hen egg-white lysozyme sulfur SAD data set. (a) The Python function for applying inverse-variance weights to obtain maximum-
likelihood merged intensity estimates using reciprocalspaceship. (b) Correlation coefficients, CC1/2 and CCanom, from repeated twofold cross validation.
The Pearson CCanom is more affected by outlier measurements in low- and intermediate-resolution bins than the Spearman CCanom. (c) The distribution
of residuals from observed intensities differs from the expected distribution of residuals for normally distributed observations. (d) CCanom from twofold
cross validation using Student t-distributed error models with varying degrees of freedom (d.f.). Error models with heavier tails show improvements in
CCanom. Error bars depict the mean � standard deviation from 15 repeats of twofold cross validation.

expression for the maximum-likelihood estimator of the true

mean given a set of observations under a Student t-distributed

error model. However, we can construct an optimization

problem to recover maximum-likelihood estimates of the

merged intensity for each Miller index. To begin, we write the

likelihood function, which is the probability of the data as a

function of the mean intensity for each Miller index, h,

Pðdata jmodelÞ ¼
Q
h;i

PðIh;i j�h; �Ih;i
Þ: ð1Þ

This likelihood function asserts that the observed intensity Ih,i,

for each Miller index h and observation i, is drawn from a

distribution centered at the merged intensity �h, with a scale

determined by the empirical standard deviation of the obser-

vation, �Ih;i
:

Ih;i ’ Pð�h; �Ih;i
Þ: ð2Þ

To recover maximum-likelihood estimates of the intensities

�̂�, we need only maximize equation (1) with respect to the

merged intensities. Equivalently, we may minimize the nega-

tive logarithm of the likelihood L with respect to the merged

intensities as follows:

L ¼ � log Pðdata jmodelÞ

¼ �
P
h;i

log PðIh;i j�h; �Ih;i
Þ;

�̂� ¼ argmin
�

�
P
h;i

log PðIh;i j�h; �Ih;i
Þ

� �
;

ð3Þ

which has the advantage of converting a numerically unstable

product into a sum.

This optimization was implemented in PyTorch (Paszke et

al., 2019) in a general form that could flexibly accept any

probability distribution from the location-scale family as its

error model (Paszke et al., 2019). As an example, we merged

the data under a Student t-distributed error model with

varying degrees of freedom. The resulting CCanom were

compared with the normally distributed error model. The

error models with fewer degrees of freedom outperformed the

error models with more degrees of freedom, with the perfor-

mance of the latter converging towards that of the normally

distributed error model [Fig. 2(d)], consistent with the Student

t distribution’s approach towards a normal distribution with

increasing degrees of freedom.

This example demonstrates the use of reciprocalspaceship

to construct a flexible merging function using a machine-

learning library. This greatly reduces the overhead required to

prototype a new analysis method by making it easy to use

existing and well supported libraries. Furthermore, the benefit

of using robust statistical estimators, as demonstrated by the

improved CCanom values in Figs. 2(b) and 2(d), could readily

extend to more complex procedures for scaling and merging

anomalous data [e.g. as described by Terwilliger et al. (2016)]

and suggests new avenues for improving the existing crystal-

lographic analysis infrastructure. One such project, careless,

combines reciprocalspaceship with TensorFlow to apply

approximate Bayesian inference to new scaling and merging

routines (Dalton et al., 2021; Abadi et al., 2015).

3.3. Revisiting the French–Wilson algorithm

In the previous example, we identified anomalous differ-

ences from a room-temperature sulfur SAD experiment. Here,

we will examine this anomalous signal in real space by making

an anomalous difference map. Before we can make a map, we

need to correct the merged intensities to account for any

negative values that may result from background subtraction

during integration. This is commonly handled using a Bayesian

approach first proposed by French and Wilson to estimate the

true intensities Jh from the merged intensities Ih following data

reduction (French & Wilson, 1978). Briefly, this algorithm

determines posterior estimates for the true intensities hJhi by

solving an integral,

hJhi ¼
R1
0

JhNðIh j Jh; �Ih
ÞPðJhÞ dJh; ð4Þ

where the likelihood NðIh j Jh; �Ih
Þ is taken to be normally

distributed, with the empirical error estimates for the merged

intensities �Ih
as standard deviations. The prior distribution

P(Jh) is the Wilson distribution (Wilson, 1949):

PðJhÞ ¼

��1 expð�Jh=�Þ J � 0, acentric,

ð2��JhÞ
�1=2 expð�Jh=2�Þ J � 0, centric,

0 J< 0,

8<
: ð5Þ

which is parameterized by �, the mean intensity of reflections

at the appropriate resolution. To estimate � for each reflec-

tion, the classic French–Wilson algorithm computes the mean

intensity of reflections in resolution shells and interpolates the

mean values from shells adjacent to the particular reflection.

Since the functional form of the prior distribution has strictly

positive support (Wilson, 1949), the expectations computed

from equation (4) are necessarily positive. Furthermore, the

posterior structure factor amplitudes can be estimated as part

of the same subroutine using the following integral:

hFhi ¼
R1
0

Jhð Þ
1=2
NðIh j Jh; �Ih

ÞPðJhÞ dJh: ð6Þ

The implementation of this method in reciprocalspaceship

differs significantly from the classical one, which was limited

by the computing resources and statistical tools available at

the time. Notably, rather than computing mean values in shells,

we use a Gaussian smoother (Murphy, 2012) to regress the

mean of the intensity distributions � against resolution. This

regression model is quite flexible and offers an anisotropic

mode which estimates the mean intensity locally as a function

of the Miller indices. Whereas the original paper computed the

posterior by interpolating a table of cached results (French &

Wilson, 1978), our implementation uses Chebyshev–Gauss

quadrature to evaluate the integrals efficiently on the fly. We

generate quadrature points and weights with NumPy (Harris

et al., 2020) and compute the relevant log probabilities using

the distribution classes implemented in SciPy (Virtanen et al.,

2020). Our implementation is tested for consistency with the

original paper (French & Wilson, 1978) and with CCTBX

(Grosse-Kunstleve et al., 2002).

computer programs

J. Appl. Cryst. (2021). 54, 1521–1529 Jack B. Greisman et al. � reciprocalspaceship 1525

The merged intensities from the sulfur SAD experiment

were rescaled using the French–Wilson algorithm and

converted to structure factor amplitudes. This operation

leaves large intensities relatively unchanged, while ensuring

that any negative values become strictly positive [Fig. 3(a)].

Anomalous differences of the structure factor amplitudes

were computed between Friedel pairs. The anomalous differ-

ence map shown in Fig. 3(b) was then constructed using phases

derived from the refined model (PDB entry 7l84; J. B.

Greisman, K. M. Dalton & D. R. Hekstra, to be published).

The map shows significant anomalous peaks at a 5� contour,

with the density strictly localized to each of the ten sulfur

atoms in the lysozyme structure.

3.4. Identifying anomalous scattering atoms in real space

The anomalous difference map shown in Fig. 3(b) was made

from the anomalous difference amplitudes and phases. It is

also possible to compute a real-space map using reciprocal-

spaceship and NumPy, which enables one to use image

processing software to automate the identification of anom-

alous scattering atoms. This process is illustrated in Fig. 3(c).

The provided code snippet arranges the complex anomalous

structure factors on a reciprocal-space grid and then computes

the real-space anomalous difference map using the fast

Fourier transform function (Cooley & Tukey, 1965) in NumPy.

scikit-image, an image processing library (van der Walt et al.,

2014), can be used to identify peaks in the map. The auto-

matically identified sites are overlaid with the anomalous

difference map in Fig. 3(d), demonstrating that this procedure

successfully identifies the 80 sulfur sites in the tetragonal

lysozyme unit cell (ten sulfurs per copy, eight copies)

This example illustrates the use of reciprocalspaceship to

produce real-space maps from structure factors. Importantly,

due to the seamless integration with NumPy, one can take

advantage of Python image processing libraries to identify

peaks in the real-space density. Due to the

wealth of libraries and tools written by the

Python community, this feature of reci-

procalspaceship can provide the opportu-

nity to develop and test new algorithms

rapidly and to expand the crystallographic

community by providing data science tools

familiar to researchers from many other

fields. In this manner, the use of recipro-

calspaceship could simplify existing data

processing pipelines and perhaps be useful

in the development of new methods in

crystallographic data analysis or structural

bioinformatics.

3.5. Applying weights to a time-resolved
difference map

Time-resolved crystallography experi-

ments make use of X-ray diffraction to

monitor structural changes in a crystalline

sample. Commonly, structural changes are

initially evaluated on the basis of isomor-

phous difference maps. Such maps are

computed by estimating the difference in

structure factor amplitudes of the sample

before and after a perturbation, such as a

laser pulse. Combining these |Fon| � |Foff|

differences with ground-state phases from

a reference structure yields an estimate of

the differences between the electron

density of the sample before and after the

perturbation. Difference maps are often

noisy due to systematic errors or scaling

artifacts and are frequently weighted by

the magnitude of the difference signal

and/or the error estimates associated with

the empirical differences in structure

factor amplitudes. In this example we will

computer programs

1526 Jack B. Greisman et al. � reciprocalspaceship J. Appl. Cryst. (2021). 54, 1521–1529

Figure 3
Analysis of anomalous differences from a sulfur SAD experiment. (a) Application of the
French–Wilson algorithm to merged intensities. Large intensities are relatively unchanged, while
small and negative intensities are corrected to be strictly positive. The red dashed line shows y =
x and the inset highlights the small and negative merged intensities. (b) An anomalous difference
map using difference structure factor amplitudes derived from the room-temperature sulfur
SAD data set and phases from the refined model (PDB 7l84). The map is contoured at 5�. (c)
Example code for identifying anomalous scattering sites in an anomalous difference map. (d)
The unit cell containing sulfur sites identified using the code snippet (yellow spheres), overlaid
with the anomalous difference map (purple mesh, contoured at 10�). The protein molecule from
one asymmetric unit of PDB 7l84 is shown in gray. The images in (b) and (d) were rendered using
PyMOL (Schrödinger, 2020).

visualize the effects of applying weights to a time-resolved

difference map of photoactive yellow protein (PYP). PYP is a

model system in time-resolved crystallography based on the

trans-to-cis isomerization of its 4-hydroxycinnamyl chromo-

phore upon absorption of blue light (Genick et al., 1997). This

data set was collected at the BioCARS Laue beamline APS-

14-ID and comprises matched images collected in the dark and

2 ms after illumination with blue light. These data were

collected and provided by Marius Schmidt and Vukica Šrajer.

Several schemes have been used to apply weights to time-

resolved difference maps. Many of them take the form of

equation (7), involving a term based on the squared uncer-

tainty in the difference structure factor amplitude (�2
�F) and

its observed mean over reflections (�2
�F) and, optionally, a

scale term based on the squared magnitude of the observed

difference structure factor amplitude (|�F |2) and its observed

mean over reflections (j�Fj2):

w ¼ 1þ
�2

�F

�2
�F

þ �
j�Fj2

j�Fj2

 !�1

: ð7Þ

With � = 0, these weights take the form derived by Ursby &

Bourgeois (1997). The �F-dependent term downweights the

influence of likely outliers in the data set resulting from poorly

measured differences by assigning lower weights to their map

coefficients. The tolerance for large differences is controlled

by the � parameter. � values of 1.0 (Šrajer et al., 2001) and 0.05

(Hekstra et al., 2016) have been reported in the literature.

The weighting function given by equation (7) can be

expressed in a few lines of Python that apply weights based on

the values of |�F | and ��F in an rs.DataSet object

[Fig. 4(a)]. The weights computed for the PYP data set are

illustrated in Fig. 4(b). Difference structure factors with low

signal-to-noise ratios (large ��F relative to |�F |) or large

difference structure factor amplitudes are assigned lower

weight. The unweighted and weighted difference maps were

then made using phases derived from the ground-state model

(PDB entry 2phy; Borgstahl et al., 1995). The side-by-side

comparison of these difference maps shows that the weights

greatly improve the interpretability of the structural changes –

emphasizing the trans-to-cis isomerization of the chromo-

phore, as well as concerted changes in the nearby Arg52 and

Phe96 side chains [Figs. 4(c) and 4(d)].

This example illustrates the use of reciprocalspaceship to

create custom maps. Importantly, it demonstrates both the

exploratory analysis of different weighting schemes and the

writing of MTZ files including

different weight columns. These can

be used to visualize the impact of

the different weights in a molecular

visualization suite.

4. Discussion

reciprocalspaceship is a Python

library that can form the foundation

for the development of new

methods in crystallographic data

analysis. This library provides a

DataSet object that can conve-

niently represent tabular reflection

data while adhering to common

practices in Python data analysis.

This empowers crystallographers to

write idiomatic Python code to

analyze their experiments while

having full support for the necessary

features of crystallographic analysis,

such as symmetry operations, unit

cells and space groups. Example

applications have been presented

which use this library to merge

scaled reflections, analyze anom-

alous differences from a SAD

experiment and observe the impact

of weights on a time-resolved

difference map. These examples

illustrate how reciprocalspaceship

could be used in several different

contexts, producing useful analyses

computer programs

J. Appl. Cryst. (2021). 54, 1521–1529 Jack B. Greisman et al. � reciprocalspaceship 1527

Figure 4
Weighting a time-resolved difference map. (a) The Python function for applying weights to arrays of
difference structure factor amplitudes and uncertainties. (b) A scatter plot showing the weights assigned
to each observed difference structure factor amplitude with � = 0.05. (c) An unweighted |Fon| � |Foff|
difference map in the vicinity of the PYP chromophore. (d) A weighted |Fon|� |Foff| difference map with
� = 0.05. The trans (ground state) PYP structure (gray) is taken from PDB entry 2phy and the cis
(excited, pB state) PYP structure (blue) is taken from PDB entry 3ume (Tripathi et al., 2012). The
difference maps are contoured at �3� and were carved within 1.2 Å of the displayed residues. These
figures were rendered using PyMOL (Schrödinger, 2020).

with relatively short scripts and functions that can take full

advantage of the existing Python ecosystem.

reciprocalspaceship can be used for exploratory data

analysis, allowing one to inspect interesting properties of an

important data set. Or it can be used to prototype, develop

and ship new methods and algorithms for analyzing data sets

(Dalton et al., 2021). Furthermore, this library can be useful in

teaching crystallography by allowing students to familiarize

themselves with reflection data, space groups and symmetry

and the implementation of commonly used algorithms. By

using a framework familiar to Python data scientists, this

library lowers the barrier to entry for crystallographic soft-

ware development.

5. Data and code availability

reciprocalspaceship and worked-out examples are available on

GitHub at https://github.com/Hekstra-Lab/reciprocalspaceship

and can be installed directly from PyPI. The complete code

used in these examples is available in the reciprocalspaceship

documentation, and the interactive Jupyter notebooks and

all supporting data can be downloaded directly from the

Examples directory of the GitHub repository.

Acknowledgements

We thank the staff at the Northeastern Collaborative Access

Team (NE-CAT), beamline 24-ID-C of the Advanced Photon

Source, for supporting our room-temperature crystallography

experiments, with special thanks to Igor Kourinov. We also

thank Marius Schmidt and Vukica Šrajer for the time-resolved

Laue diffraction data of photoactive yellow protein.

Funding information

Funding for this research was provided by Searle Scholarship

Program (scholarship No. SSP-2018-3240 to DRH); George W.

Merck Fund of the New York Community Trust (fellowship

No. 338034 to DRH); and National Science Foundation

Graduate Research Fellowship (grant No. DGE1745303 to

JBG). NE-CAT beamlines are supported by the National

Institute of General Medical Sciences, NIH (grant No. P30

GM124165), using resources of the Advanced Photon Source,

a US Department of Energy (DOE) Office of Science User

Facility operated for the DOE Office of Science by Argonne

National Laboratory under contract No. DE-AC02-

06CH11357.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C.,
Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz,
R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R.,
Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B.,
Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu,
Y. & Zheng, X. (2015). TensorFlow: Large-scale Machine Learning
on Heterogeneous Systems, https://www.tensorflow.org/.

Abrahams, S. C. & Keve, E. T. (1971). Acta Cryst. A27, 157–165.

Adams, P. D., Afonine, P. V., Bunkóczi, G., Chen, V. B., Davis, I. W.,
Echols, N., Headd, J. J., Hung, L.-W., Kapral, G. J., Grosse-
Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read,
R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C. &
Zwart, P. H. (2010). Acta Cryst. D66, 213–221.

Borgstahl, G. E., Williams, D. R. & Getzoff, E. D. (1995).
Biochemistry, 34, 6278–6287.

Cooley, J. W. & Tukey, J. W. (1965). Math. Comput. 19, 297–301.
Dalton, K. M., Greisman, J. B. & Hekstra, D. R. (2021). bioRxiv,

https://doi.org/10.1101/2021.01.05.425510.
Dods, R., Båth, P., Morozov, D., Gagnér, V. A., Arnlund, D., Luk,

H. L., Kübel, J., Maj, M., Vallejos, A., Wickstrand, C., Bosman, R.,
Beyerlein, K. R., Nelson, G., Liang, M., Milathianaki, D., Robinson,
J., Harimoorthy, R., Berntsen, P., Malmerberg, E., Johansson, L.,
Andersson, R., Carbajo, S., Claesson, E., Conrad, C. E., Dahl, P.,
Hammarin, G., Hunter, M. S., Li, C., Lisova, S., Royant, A., Safari,
C., Sharma, A., Williams, G. J., Yefanov, O., Westenhoff, S.,
Davidsson, J., DePonte, D. P., Boutet, S., Barty, A., Katona, G.,
Groenhof, G., Brändén, G. & Neutze, R. (2021). Nature, 589, 310–
314.

Evans, P. R. & Murshudov, G. N. (2013). Acta Cryst. D69, 1204–1214.
French, S. & Wilson, K. (1978). Acta Cryst. A34, 517–525.
Garcia-Bonete, M.-J. & Katona, G. (2019). Acta Cryst. A75, 851–860.
Genick, U. K., Borgstahl, G. E. O., Ng, K., Ren, Z., Pradervand, C.,

Burke, P. M., Šrajer, V., Teng, T.-Y., Schildkamp, W., McRee, D. E.,
Moffat, K. & Getzoff, E. D. (1997). Science, 275, 1471–1475.

Greisman, J. B., Dalton, K. M. & Hekstra, D. R. (2021). Data Set for
Hen Egg White Lysozyme by Native S-SAD at Room Temperature.
Version 1.0.0. https://doi.org/10.5281/zenodo.4426679.

Grosse-Kunstleve, R. W., Sauter, N. K., Moriarty, N. W. & Adams, P. D.
(2002). J. Appl. Cryst. 35, 126–136.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R.,
Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith,
N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M.,
Haldane, A., del Rı́o, J. F., Wiebe, M., Peterson, P., Gérard-
Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H.,
Gohlke, C. & Oliphant, T. E. (2020). Nature, 585, 357–362.

Hatti, K. S., McCoy, A. J. & Read, R. J. (2021). bioRxiv, https://
doi.org/10.1101/2021.02.07.430107.

Hekstra, D. R., White, K. I., Socolich, M. A., Henning, R. W., Šrajer,
V. & Ranganathan, R. (2016). Nature, 540, 400–405.

Howell, P. L. & Smith, G. D. (1992). J. Appl. Cryst. 25, 81–86.
Kabsch, W. (2010a). Acta Cryst. D66, 133–144.
Kabsch, W. (2010b). Acta Cryst. D66, 125–132.
Karplus, P. A. & Diederichs, K. (2012). Science, 336, 1030–1033.
Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M.,

Frederic, J., Kelley, K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P.,
Avila, D., Abdalla, S., Willing, C. & Joint Development Team
(2016). Positioning and Power in Academic Publishing: Players,
Agents and Agendas, edited by F. Loizides & B. Scmidt, pp. 87–90.
Amsterdam: IOS Press.

Krekel, H., Oliveira, B., Pfannschmidt, R., Bruynooghe, F., Laugher,
B. & Bruhin, F. (2020). pytest. Version 6.2.1. https://github.com/
pytest-dev/pytest.

Lange, K. L., Little, R. J. A. & Taylor, J. M. G. (1989). J. Am. Stat.
Assoc. 84, 881–896.

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective.
Cambridge: MIT Press.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology,
Vol. 276, Macromolecular Crystallography, Part A, edited by C. W.
Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A.,
Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A.,
Chilamkurthy, S., Steiner, B., Fang, L., Bai, J. & Chintala, S.
(2019). Advances in Neural Information Processing Systems,
Vol. 32, edited by H. Wallach, H. Larochelle, A. Beygelzimer, F.

computer programs

1528 Jack B. Greisman et al. � reciprocalspaceship J. Appl. Cryst. (2021). 54, 1521–1529

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB25

d’Alché-Buc, E. Fox & R. Garnett, pp. 8024–8035. Red Hook:
Curran Associates.

Reback, J., McKinney, W., Brockmendel, J., den Bossche, J. V.,
Augspurger, T., Cloud, P., Young, G. F., Hawkins, S., Sinhrks,
Roeschke, M., Klein, A., Petersen, T., Tratner, J., She, C., Ayd, W.,
Naveh, S., Garcia, M., Schendel, J., Hayden, A., Saxton, D., Hoefer,
P., Jancauskas, V., McMaster, A., Battiston, P., Seabold, S., Gorelli,
M., Dong, K. & Hoyer, S. (2021). pandas. Version 1.2.1. https://
doi.org/10.5281/zenodo.3509134.

Schrödinger (2020). The pyMOL Molecular Graphics System.
Version 2.4. Schrödinger LLC, New York, USA.

Šrajer, V., Ren, Z., Teng, T.-Y., Schmidt, M., Ursby, T., Bourgeois, D.,
Pradervand, C., Schildkamp, W., Wulff, M. & Moffat, K. (2001).
Biochemistry, 40, 13802–13815.

Terwilliger, T. C., Adams, P. D., Read, R. J., McCoy, A. J., Moriarty,
N. W., Grosse-Kunstleve, R. W., Afonine, P. V., Zwart, P. H. &
Hung, L.-W. (2009). Acta Cryst. D65, 582–601.

Terwilliger, T. C., Bunkóczi, G., Hung, L.-W., Zwart, P. H., Smith, J. L.,
Akey, D. L. & Adams, P. D. (2016). Acta Cryst. D72, 359–374.

Tripathi, S., Šrajer, V., Purwar, N., Henning, R. & Schmidt, M. (2012).
Biophys. J. 102, 325–332.

Ursby, T. & Bourgeois, D. (1997). Acta Cryst. A53, 564–575.
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,

Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright,
J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov,
N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J.,
Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D.,
Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris,
C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van
Mulbregt, P., Vijaykumar, A., Bardelli, A. P., Rothberg, A., Hilboll,
A., Kloeckner, A., Scopatz, A., Lee, A., Rokem, A., Woods, C. N.,
Fulton, C., Masson, C., Häggström, C., Fitzgerald, C., Nicholson,

D. A., Hagen, D. R., Pasechnik, D. V., Olivetti, E., Martin, E.,
Wieser, E., Silva, F., Lenders, F., Wilhelm, F., Young, G., Price, G. A.,
Ingold, G., Allen, G. E., Lee, G. R., Audren, H., Probst, I., Dietrich,
J. P., Silterra, J., Webber, J. T., Slavič, J., Nothman, J., Buchner, J.,
Kulick, J., Schönberger, J. L., de Miranda Cardoso, J. V., Reimer, J.,
Harrington, J., Rodrı́guez, J. L. C., Nunez-Iglesias, J., Kuczynski, J.,
Tritz, K., Thoma, M., Newville, M., Kümmerer, M., Bolingbroke,
M., Tartre, M., Pak, M., Smith, N. J., Nowaczyk, N., Shebanov, N.,
Pavlyk, O., Brodtkorb, P. A., Lee, P., McGibbon, R. T., Feldbauer,
R., Lewis, S., Tygier, S., Sievert, S., Vigna, S., Peterson, S., More, S.,
Pudlik, T., Oshima, T., Pingel, T. J., Robitaille, T. P., Spura, T., Jones,
T. R., Cera, T., Leslie, T., Zito, T., Krauss, T., Upadhyay, U.,
Halchenko, Y. O. & Vázquez-Baeza, Y. (2020). Nat. Methods, 17,
261–272.

Walt, S. van der, Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F.,
Warner, J. D., Yager, N., Gouillart, E., Yu, T. & The scikit-image
Contributors (2014). PeerJ, 2, e453.

Weiss, M. S. (2001). J. Appl. Cryst. 34, 130–135.
Wickstrand, C., Katona, G., Nakane, T., Nogly, P., Standfuss, J.,

Nango, E. & Neutze, R. (2020). Struct. Dyn. 7, 024701.
Wilson, A. J. C. (1949). Acta Cryst. 2, 318–321.
Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P.,

Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G. W.,
McCoy, A., McNicholas, S. J., Murshudov, G. N., Pannu, N. S.,
Potterton, E. A., Powell, H. R., Read, R. J., Vagin, A. & Wilson,
K. S. (2011). Acta Cryst. D67, 235–242.

Winter, G., Waterman, D. G., Parkhurst, J. M., Brewster, A. S., Gildea,
R. J., Gerstel, M., Fuentes-Montero, L., Vollmar, M., Michels-
Clark, T., Young, I. D., Sauter, N. K. & Evans, G. (2018). Acta Cryst.
D74, 85–97.

Wojdyr, M. (2021). GEMMI – A Library for Structural Biology,
https://github.com/project-gemmi/gemmi.

computer programs

J. Appl. Cryst. (2021). 54, 1521–1529 Jack B. Greisman et al. � reciprocalspaceship 1529

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5079&bbid=BB38

