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ABSTRACT: Protein−protein interactions (PPIs) have evolved to
display binding affinities that can support their function. As such, cognate
and noncognate PPIs could be highly similar structurally but exhibit huge
differences in binding affinities. To understand this phenomenon, we study
three homologous protease−inhibitor PPIs that span 9 orders of
magnitude in binding affinity. Using state-of-the-art methodology that
combines protein randomization, affinity sorting, deep sequencing, and
data normalization, we report quantitative binding landscapes consisting of
ΔΔGbind values for the three PPIs, gleaned from tens of thousands of
single and double mutations. We show that binding landscapes of the
three complexes are strikingly different and depend on the PPI
evolutionary optimality. We observe different patterns of couplings
between mutations for the three PPIs with negative and positive epistasis
appearing most frequently at hot-spot and cold-spot positions,
respectively. The evolutionary trends observed here are likely to be universal to other biological complexes in the cell.

■ INTRODUCTION

Protein function is determined by the protein amino acid
sequence, which has undergone billions of years of evolution
while subjected to various selection pressures. Native proteins
have evolved not only to perform their main function but also
to satisfy a number of criteria such as solubility,1 low
propensity for aggregation, stability, resistance to stress
conditions,2 etc. As a result of these opposing pressures3,4

and mutation-selection balance,5 proteins usually function
below their maximum capacity.6,7 Multiple experiments on
enzymes and binding domains proved that protein fitness
could be enhanced by several orders of magnitude by applying
an appropriate pressure and selecting the fittest protein
sequences.8−11

Fitness landscapes explore the effects of all possible
mutations on the ability of proteins to perform their main
function. Such landscapes reveal how far a particular protein is
from its functional maximum, what fraction of mutations leads
up and down the “fitness hill”, how large the mutational steps
are, and which residues are the most critical to protein
function.12 Mapping of fitness landscapes is thus an attractive
strategy for approaching various protein engineering projects
with the goal to improve or modify protein function since the
best mutations could be easily identified from the fitness
landscape.13,14 Development of new strategies for protein
randomization and advances in next-generation sequencing

(NGS) enabled several exciting studies that report fitness
landscapes for a number of biological systems.1,15−27 In these
studies, the effects of mutations on enzyme catalysis,
fluorescence, thermostability, and other functions have been
reported, giving invaluable insights on how different biological
functions have evolved.
Binding between two or more protein partners represents

one of many important protein functions. Binding is crucial in
many cellular activities such as signal transduction, protein
regulation, transcription, translation, and others. Mutations in
protein−protein interactions (PPIs) frequently result in a
change in free energy of binding (ΔΔGbind), sometimes
weakening and sometimes stabilizing the interaction.28 A
mutation resulting in substantial ΔΔGbind in one PPI could
translate into remodeling of the whole PPI network, frequently
leading to dysregulation of signal transduction pathways and
disease.29,30 Therefore, understanding how mutations in PPIs
affect their binding affinity is of great importance to both basic
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biology and to biomedical sciences, where inhibition or
activation of a particular PPI might help to treat the related
disease.
At the present moment, comprehensive binding landscapes

have been mapped for only a handful of proteins,13,31−36 while
for most PPIs only a few ΔΔGbind data points have been
measured, most frequently involving mutations to ala-
nines.37−41 Comparison of the available sparse ΔΔGbind data
from different studies led us to hypothesize that different
classes of PPIs possess principally different binding landscapes
and lie at different points relative to the binding landscape
maximum, i.e., the amino acid sequence with the highest
possible affinity. While in some PPIs, the majority of single
mutations lead to large destabilization of the protein−protein
complex,33,42−44 in other PPIs frequent affinity-enhancing
mutations are observed.32,45 The magnitude of ΔΔGbind due to
mutation is likely to depend on the nature of the PPI under
study as well as on the location of the mutation within the
protein. It has been demonstrated that a few critical positions,
termed hot-spots of binding, contribute the most significantly
to the PPI binding energy with mutations at those positions
usually leading to a large reduction in affinity.46−48 Cold-spot
positions, on the other hand, present multiple possibilities for
PPI affinity improvement.49

To investigate the basis for large differences in binding
affinity between evolutionarily optimized cognate PPIs and
nonoptimized noncognate PPIs, we compare comprehensive
binding landscapes of three structurally similar PPIs that span
9 orders of magnitude in binding affinity (KD) (Figure 1). We
examine the interaction of bovine pancreatic trypsin inhibitor
(BPTI) with its coevolved biological target bovine trypsin
(BT) (KD = 10−14 M)44 and with noncognate trypsin paralogs
bovine α-chymotrypsin (ChT) (KD = 10−8 M)44 and human
mesotrypsin (MT) (KD = 10−5 M).50 BPTI has coevolved with
trypsin to protect the pancreas from premature trypsin

activation and consequent autodigestion of the organ. BPTI
is a compact 58-amino acid protein with three disulfide bonds;
it binds to BT by inserting a binding loop into the trypsin
active site in a substrate-like manner, with a Lys residue
occupying the complementary trypsin specificity pocket.51 The
backbone of the BPTI binding loop is preconfigured in
canonical conformation for lock-and-key recognition at the BT
active site, forming main chain−main chain hydrogen bonds
between inhibitor and enzyme that are structurally conserved
across complexes with different proteases.51,52 The structure of
BPTI thus acts as a “molecular vise”,42 forcing the same Lys
residue into the specificity pocket of most BT paralogs,
irrespective of whether the residue forms favorable or locally
deleterious interactions. Consequently, BPTI forms a structur-
ally similar although weaker PPI with ChT, which possesses
specificity for cleavage after large hydrophobic residues rather
than Lys/Arg. BPTI likewise forms a similar PPI with MT, a
trypsin paralog that is present only in hominids, having arisen
from a relatively recent gene duplication.53 MT retains the
primary specificity of other trypsins for cleavage after Lys/Arg
but has evolved unique resistance to inhibition by canonical
trypsin inhibitors due to several mutations near the active site,
resulting in much weaker affinity toward BPTI.54−56

Consistent with the structural homology between these three
PPIs, they exhibit binding interfaces of nearly identical
physicochemical properties despite their large differences in
KD values (Figure 1).
In an attempt to better understand the drastic differences in

binding affinities between these PPIs, we explored ΔΔGbind
values between the three proteases and all single and double
binding interface mutants of BPTI. To measure ΔΔGbind
values for tens of thousands of mutants in these three PPIs,
we employed a strategy recently developed by our group that
relies on protein randomization, yeast surface display (YSD)
technology, NGS analysis, and a small experimental data set of

Figure 1. Comparison of KDs and structures for the three PPIs. Structures of the three complexes between BPTI and BT (PDB ID 3OTJ), ChT
(PDB ID 1CBW), and MT (PDB ID 2R9P) are shown. Summarized are inhibition constants, change in solvent-accessible surface area upon
complex formation in A2 (ΔASA), number of intra- and inter-molecular hydrogen bonds, salt bridges, van der Waals (vdW) energy, and interface
sequence identity of proteases relative to BT.
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ΔΔGbind values measured using purified proteins to generate
ΔΔGbind values for the remaining numerous mutants of the
same protein complex.57 We previously demonstrated that the
above method produces a very high correlation (R > 0.9)
between the NGS-based predictions of ΔΔGbind values and the
actual experimental values.57 In the present study, we use this
state-of-the-art methodology to construct and compare binding
landscapes of the three structurally similar BPTI/protease
complexes.
Our data demonstrate that the three complexes possess

drastically different binding landscapes and lie at different
points with respect to the binding landscape maximum.
Additionally, these differences in landscape contour and
placement underlie correspondingly different energetic con-
sequences of mutation, including asymmetrical directionality
and different tendencies toward positive or negative epistasis.

■ RESULTS

To map binding landscapes of the three homologous BPTI/
protease complexes, we first incorporated the wild-type BPTI
(BPTIWT) gene into the pCTCON vector, compatible with
YSD technology. Using this construct, BPTIWT was expressed
on the surface of a yeast cell with a C-terminal myc-tag for
monitoring protein expression through binding of an antimyc
antibody and a secondary antibody conjugated to phycoery-
thrin (PE) (Figure 2A). Binding of a protease to BPTIWT was
accessed by monitoring fluorescence of the FITC fluorophore
conjugated to the protease via neutravidin. The assessment of
binding of BPTIWT to the three proteases by fluorescence-
activated cell sorting (FACS) showed a diagonal narrow
distribution, demonstrating that BPTIWT is well expressed on
the surface of yeast cells, is properly folded, and binds to each
of the proteases (Figure S1 in the Supporting Information).

We next generated a library of BPTI mutants that contained
all single and double BPTI mutants at positions that comprise
the direct binding interface with proteases in the BPTI/
protease structures. We randomized 12 BPTI positions to 20
amino acids while leaving two cysteines that participate in a
disulfide bond intact to preserve BPTI folding (Figure 2B). In
addition, all possible combinations of double mutations
encompassing these 12 positions were encoded in the library.
The BPTI library, referred to as the naiv̈e library, contained
228 single mutants and all possible pairs of such mutations,
resulting in the total theoretical diversity of 26,400 BPTI
sequences. The naiv̈e library was transformed into yeast and
sequenced by NGS. Sequencing results showed that all
possible single mutations were covered in the naiv̈e library.
Among double mutants, we saw 89% of all possible sequences;
this percentage was reduced to 60% when a cutoff of five
sequencing reads was applied.
We next expressed the BPTI library on the yeast surface and

measured expression and binding of the BPTI library to the
three proteases using FACS (Figure 2C). The concentration of
each protease was optimized to exhibit a considerable spread of
the FACS binding signals from different BPTI mutants (Figure
S2 in the Supporting Information). For each protease, we
performed a sorting experiment and collected yeast cells with
BPTI mutants belonging to four different affinity groups:
higher than WT affinity (HI), WT-like affinity (WT), slightly
lower than WT affinity (SL), and strongly lower than WT
affinity (LO) (Figure 2C and Figures S3−S5 in the Supporting
Information). The cells from each affinity gate were grown and
sequenced with NGS, resulting in 300−900 K reads per each
population. For each BPTI mutant and each protease, we next
calculated the enrichment value, which represents the ratio
between the mutant’s frequency in a particular affinity gate to
its frequency in the naiv̈e library. We thereby obtained

Figure 2. (A) Yeast surface display construct with BPTI displayed on the surface of yeast cells. C-Myc tag is used to monitor BPTI mutant
expression using PE-labeled antibody. Proteases are labeled by FITC that is used to monitor binding between the two proteins. (B) Construction of
the BPTI mutant library. Structure of the ChT/BPTI complex with ChT shown in orange and BPTI in violet. BPTI binding interface positions
randomized to 20 amino acids are shown as spheres. (C) FACS data showing sorting of BPTI mutants binding to protease into four different
populations. The uppermost HI gate contains BPTI mutants with affinity higher than that of BPTIWT. The second uppermost gate, WT, contains
BPTI mutants with an affinity similar to BPTIWT. The third gate, SL, contains BPTI mutants with an affinity slightly lower than that of BPTIWT, and
the lowest gate, LO, contains BPTI mutants with an affinity much lower than that of BPTIWT. The data are shown for the BPTI/ChT interaction,
while similar data were obtained for the BPTI/MT and BPTI/BT interactions.
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heatmaps of the enrichment values for all positions as shown in
Figure 3 for the CT/BPTI interaction.
While the enrichment maps give us qualitative measures of

affinity changes due to various mutations, our goal was to
construct and compare quantitative binding landscapes of the
BPTI/protease interactions. We thus utilized the methodology
developed in our recent paper that allows us to normalize the
NGS-based enrichments using a small data set of experimental
ΔΔGbind values measured by biophysical techniques on
purified proteins.57 We first compiled such normalization
data sets for the three complexes, collecting 34 and 33 ΔΔGbind
data points from the literature for the ChT/BPTI and BT/
BPTI interactions, respectively.44,57−60 For the MT/BPTI
interaction, where only a few ΔΔGbind data points have been
reported,50,61 we produced the normalization data set by
expressing and purifying 12 BPTI mutants and measuring their
binding affinities to MT (Figure S6 in the Supporting
Information). The above data sets were used to obtain a
normalization formula for each protease that converts the four
enrichment values from the NGS data into the predicted
ΔΔGbind values. For all three enzymes, high correlation was
found between the ΔΔGbind values predicted from NGS and
those experimentally determined using purified proteins (R ≈
0.9; Figure S7 in the Supporting Information).
We next used these normalization formulas to predict

ΔΔGbind values for all single and double BPTI mutants that
were detected by NGS for the three PPIs. While nearly all
BPTI single mutants were sequenced in all four affinity gates
for the three proteases, the double mutants were covered less
extensively in the NGS results with only 576, 3393, and 636
double mutants appearing in all four affinity gates for ChT, BT,
and MT, respectively. The relatively low coverage of double
mutants is due to two main reasons. First, some BPTI mutants
exhibited low folding stability, resulting in their low expression
on yeast. Such destabilized mutants were not collected in our
selection experiments for all three PPIs. Second, the number of
NGS runs was not sufficient to detect all ∼26 000 double
mutants in all affinity gates, thus resulting in some differences
in invisible mutants for each protease. To increase the coverage
of ΔΔGbind predictions for the double mutants and to
complete the predictions for single mutants, we examined
whether normalization formulas could be obtained from

subsets of three, two, and one affinity gate. While all subsets
of gates were examined, only those subsets that produced high
correlation with experimental data on pure proteins were
selected for the final predictions. For each ΔΔGbind prediction,
we estimated the uncertainty in ΔΔGbind predictions using the
bootstrapping of the NGS data (see Methods for details).
Overall, we were able to make reliable predictions for 13 113
double mutants for the BT/BPTI interaction (50% of all
binding interface double mutations), 12 537 for the ChT/
BPTI interaction (47%), and 13 354 for the MT/BPTI
interaction (51%). We thus constructed full single mutant
binding landscapes (Figure 4) and partial double mutant
binding landscapes for BPTI interacting with the three
homologous proteases with highly divergent KDs.

Analysis of the Single Mutant Binding Landscapes.
To compare how single mutations affect free energy of binding
in the three PPIs, we summarized our results in a histogram
that includes ΔΔGbind values from all 228 single mutations for
each PPI (Figure 5A−C). While all three histograms show
predominance of destabilizing mutations (ΔΔGbind > 0), the
magnitude of destabilization due to single mutations differs
substantially among the three PPIs. For the high-affinity BT/
BPTI complex, very high ∼12 kcal/mol destabilizations were
observed due to some single mutations, medium destabiliza-
tions (up to 6 kcal/mol) were observed in the ChT/BPTI
complex, and small destabilizations (up to ∼3 kcal/mol) were
observed for the low-affinity MT/BPTI complex (Figure 4 and
Figure 5A−C). On average, a single mutation destabilized a
BT/BPTI interaction by 4.5 kcal/mol, a ChT/BPTI
interaction by 1.6 kcal/mol, and an MT/BPTI interaction by
0.82 kcal/mol. Affinity-enhancing mutations appeared more
frequently in the low-affinity MT/BPTI complex (50
mutations or 22%), less frequently in the medium-affinity
ChT/BPTI complex (37 mutations or 16%), and only once
(<1%) in the high-affinity BT/BPTI complex. Per-position
analysis of ΔΔGbind values revealed that all but one position on
BPTI were absolute hot-spots in the BT/BPTI interaction,
exhibiting only positive ΔΔGbind values (Figure 4). In contrast,
only four absolute hot-spots were present in the ChT/BPTI
interaction (positions 12, 16, 36, 37) and only two in the MT/
BPTI interaction (position 16 and 36). The spatial distribution
of cold-spot and hot-spot positions showed different patterns

Figure 3. Heatmap showing the enrichment values for each single mutation in the ChT/BPTI complex in the four sorted affinity gates. The
enrichment ratio varies from high (green) to low (red), as shown on the right axis. Similar maps were obtained for the other two PPIs.

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.1c08707
J. Am. Chem. Soc. 2021, 143, 17261−17275

17264

https://pubs.acs.org/doi/10.1021/jacs.1c08707?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c08707?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c08707?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c08707?fig=fig3&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.1c08707?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


among the three complexes (Figure 6). Position 15 is nearly a
hot-spot in both the BT/BPTI and the MT/BPTI complexes,
with all mutations leading to high destabilization of the two
complexes except for the K15R mutation, which leads to
affinity improvement. However, the same position is a cold-
spot in the ChT/BPTI complex, where all hydrophobic amino
acids lead to affinity improvement. These differences in the
position 15 preferences are in complete agreement with
previous studies on purified proteins for the BT/BPTI and
ChT/BPTI complexes.59 Additionally, the amino acid
preferences of BPTI at position 15 observed here reflect the
preferences for substrates that these enzymes cleave (Lys and
Arg for trypsins and hydrophobic amino acids for chymo-
trypsins), indicating that these enzymes have evolved to
possess optimal binding pockets for these amino acids.
Analysis of the Double Mutant Binding Landscapes.

We next compared the double mutant binding landscapes for
the three PPIs. We first plotted the histograms of ΔΔGbind

values for ∼50% of all double mutations, for which ΔΔGbind

predictions were available (Figure 5D−F). Our results show
that, on average, a double mutation destabilizes the high-
affinity BT/BPTI complex by 5.9 kcal/mol, the medium
affinity ChT/BPTI complex by 2.9 kcal/mol, and the low-
affinity MT/BPTI complex by 0.63 kcal/mol, showing the
same tendency of increased destabilization due to double
mutation with increasing affinity of the PPI as observed for
single mutants. When comparing an average effect from a
double and a single mutation, BT/BPTI and ChT/BPTI
exhibit a higher mean ΔΔGbind value for a double mutation,
consistent with the interpretation that a majority of single
mutations are destabilizing in these two PPIs. For the low-
affinity MT/BPTI complex, the double mutant average is
slightly lower compared to that of the single mutant average,
consistent with the fact that in this PPI many affinity-
enhancing mutations have been detected. All three double
mutation distributions exhibit a lower mean ΔΔGbind value in
comparison to what would be predicted from additivity of all
single mutations (Figure 5D−F). These results could be

Figure 4. Changes in ΔΔGbind for all single mutants of BPTI interacting with BT (A), ChT (B), and MT (C). Each bar represents a mutation to
one amino acid including hydrophobic amino acids (green), polar amino acids (red), charged amino acids (blue), and Cys (yellow). The x-axis
shows the WT residue followed by position. Error bars represent the 95% CI. Figure (A) in reprinted without changes from Heyne, M.; Papo, N.;
Shifman, J. M. Generating quantitative binding landscapes through fractional binding selections combined with deep sequencing and data
normalization. Nat. Commun. 2020, 11 (1), 1−7, under the terms of the CC BY license (Creative Commons Attribution 4.0 International License),
Copyright © 2020, The Author(s).
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explained by the fact that ∼50% of the BPTI double mutations
are absent from our analysis. Among the invisible mutations,
the majority result in high BPTI destabilization and are likely
to exhibit high positive ΔΔGbind upon binding to proteases.
Such mutations, if included in the analysis, would shift the
double mutant distribution to higher mean ΔΔGbind values for
all three PPIs. The minority of the double mutants are missing

due to their low coverage in the NGS data. These mutants,
however, are randomly distributed in the ΔΔGbind histogram
and are not expected to change the mean.
Using the extensive ΔΔGbind data for double mutations, we

further explored how a single mutational step from a WT
sequence alters the distribution of ΔΔGbind values for the
second mutation. For this analysis, we selected three

Figure 5. Histograms of ΔΔGbind for single and double BPTI mutants. Single BPTI mutants interacting with (A) BT; (B) ChT; and (C) MT.
Double BPTI mutants interacting with (D) BT; (E) ChT; and (F) MT. Dark red represents the actual measured values, while light red represents
the values that would result from all single mutations being additive. Mean value for ΔΔGbind for each histogram is displayed on top of each graph;
in parentheses is the value that would result from all double mutations being additive. While all 228 single mutants are incorporated into the single
mutant histograms for all proteases, only ∼50% of double mutants are summarized. The data are available in the Source Data file in the Supporting
Information.
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representative single BPTI mutants in the cognate BPTI/BT
complex: BPTI_K15R, which shows slight improvement in
affinity compared to BPTIWT (ΔΔGbind = −1.4 kcal/mol),
BPTI_A16S, whose affinity to BT is considerably weaker in
comparison to BPTIWT (ΔΔGbind = +4.5 kcal/mol), and
BPTI_K15A, which shows dramatically reduced affinity in
comparison to BPTIWT (ΔΔGbind = +11.1 kcal/mol). We next
compared the ΔΔGbind distributions for single mutations taken
on the background of each of the three specified first
mutations. While only partial single mutant landscapes could
be constructed for these three BPTI mutants interacting with
BT (as we have the data for ∼50% of the double mutants), for
the detected mutants we observe significant differences in the
binding landscapes of the three BPTI mutants with BT (Figure
S8 in the Supporting Information). K15R, which improves the
affinity of the BT/BPTI interaction, produces a histogram with
mostly destabilizing mutations going as far as +12 kcal/mol,
yet some affinity-enhancing mutations are also observed. The
medium-destabilizing mutation A16S results in a distribution
that contains both stabilizing and destabilizing steps with
magnitudes ranging from −6 to +8 kcal/mol. The highly
destabilizing mutation K15A exhibits a distribution that mostly
contains stabilizing mutations with the highest stabilization of
−6 kcal/mol. Note that for the K15A mutant we do not
observe a mutational step that would reach the affinity of the
WT BT/BPTI complex. This is likely because position 15 is
the most important energetically for the BPTI/protease
interaction; thus destroying the favorable interaction at this
position could not be fully compensated by any other mutation
on BPTI. Our results hence indicate that with every mutational
step taken from the WT BPTI sequence the binding landscape
would be changed depending on the first mutation; this change

is a result of nonadditivity of some of the single mutations in
BPTI.
We next explored the robustness and evolvability of the

BPTI sequence toward its main function, high-affinity binding
to BT. We assumed that BPTI mutants that either stabilize the
BPTI/BT complex or destabilize it by a small amount (1 kcal/
mol or less) would be functional in the cellular environment.
With this definition, only 2% of all single BPTI mutations were
functional. The number of functional mutations was increased
to ∼16% among the detected double mutations. However,
among double mutations that involve the most energetically
important position 15, only 5% would support high-affinity
binding to BT. Both of the numbers for double mutations are
likely an overestimation due to the absence of highly
destabilized BPTI mutants from our data. We further
compared the effect of the same BPTI mutations on its
binding affinity to the three proteases by computing the
correlation between ΔΔGbind values for the same mutations
between pairs of PPIs. Our analysis shows that the same single
mutations frequently result in similar binding affinity changes
for all three PPIs (Figure S9A in the Supporting Information;
R values of ∼0.55 for all PPI pairs), consistent with high
sequence homology of the studied proteases. As expected, this
correlation goes down to 0.3−0.4 when all single and double
mutations are considered (Figure S9B−D in the Supporting
Information). Further analysis shows that the largest majority
of mutations in BPTI leads to a simultaneous decrease in
affinity to pairs of proteases (91%, 81%, and 80% for BT/ChT,
BT/MT, and ChT/MT pairs, respectively). Mutations that
decrease affinity to the cognate protease BT but increase
affinity to the homologous protease are observed with
intermediate frequency (4.8% and 14.5% for BT/ChT and
BT/MT, respectively). Mutations that increase affinity to the

Figure 6. Structure of BPTI with binding interface positions colored according to the number of detected affinity-enhancing mutations at this
position when interacting with (A) BT; (B) ChT; and (C) MT. Red: no affinity-enhancing mutation was detected; green: 1 or 2 affinity-enhancing
mutations were detected; blue: 3 or more affinity-enhancing mutations were detected.
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cognate protease BT but decrease affinity to the homologous
protease are rather rare (2.9% and 2.7% for BT/ChT and BT/
MT, respectively). Very rare yet detectable are BPTI mutations
that simultaneously increase affinity for two proteases (1%,
1.6%, and 2% for BT/ChT, BT/MT, and ChT/MT,
respectively). These results agree with previous studies on
enzymes where the native activity was found to be less robust
to mutations than the promiscuous activity.62 In addition, our
results demonstrate the possibility of designing BPTI mutants
that lead to an increase in binding specificity toward one
particular protease.
Next, using the extensive quantitative data on ΔΔGbind for

single and double mutants, we investigated the extent of
coupling between various point mutations in BPTI when it
interacts with the three proteases. We have classified mutations
into three classes: additive and exhibiting positive and negative
epistasis according to the magnitude of the coupling energy
ΔGi upon two mutations X and Y:

Δ = ΔΔ + ΔΔ − ΔΔG G G Gi
X Y XY
bind bind bind (1)

Here, ΔΔGbind
X and ΔΔGbind

Y represent the change of the
binding free energy of the single mutants X and Y, respectively,
ΔΔGbind

XY represents the change of binding free energy of the
double mutant containing mutations X and Y. Negative

epistasis was defined when ΔGi < 0 within the uncertainties
of the ΔΔGbind predictions for the double mutant and the two
corresponding single mutants (eq 8), i.e., the double mutation
exhibited lower affinity compared to what is expected from
additivity of the two single mutations. Positive epistasis was
defined when ΔGi > 0, within the uncertainties of the ΔΔGbind
predictions (eq 9), i.e., the double mutation exhibited higher
affinity compared to what is expected from additivity of two
single mutations. Two mutations were defined as additive if the
mutations did not fall into either positive or negative epistasis
groups, that is, ΔGi = 0 within the uncertainties of the ΔΔGbind
predictions. In such an analysis, we are likely overestimating
the number of additive mutations as mutations with small
epistasis and large uncertainties would be assigned into the
“additive” group.
Coupling energy analysis shows that in the BT/BPTI

interaction 59% of the detected mutations are additive, 40% of
mutations show positive epistasis, and only ∼1% of mutations
show negative epistasis. In the ChT/BPTI interaction, 74% of
mutations are additive, 18% of mutations show positive
epistasis, and 8% of mutations show negative epistasis. Finally,
among the detected mutations in the MT/BPTI interaction we
observe 54% of mutations are additive, 42% exhibit positive
epistasis, and 4% show negative epistasis. Note that among the
invisible double mutations, the majority significantly destabi-

Figure 7. The matrix of ΔGi for double mutations in the three PPIs: (A) BT/BPTI; (B) ChT/BPTI; and (C) MT/BPTI. On the left and on the
top are BPTI binding interface positions randomized to 20 amino acids. Each square is a 20 × 20 matrix containing ΔGi values for coupling
between a particular mutation at one position to another particular mutation at another position in the same order. Color coding shows the degree
of cooperativity. Green: additivity; red: positive epistasis; blue: negative epistasis; white: no data are available.
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lize BPTI folding. Such destabilizing mutations are likely to
exhibit negative epistasis; thus, their absence from our data is
consistent with a higher percentage of positive vs negative
epistasis for all three complexes. We further constructed the
per-position correlation matrices displaying coupling energy
between all detected mutations in the three PPIs (Figure 7).
Figure 7 shows that the sign of ΔGi depends not only on a pair
of positions but also on the mutation type, thus demonstrating
multiple examples of sign epistasis.63 Yet, a certain preference
for either negative or positive epistasis frequently dominates
coupling at certain position pairs, as some squares are
predominantly red or blue in Figure 7. To analyze which
positions exhibit a higher degree of coupling, we averaged ΔGi
values over all detected mutations at each pair of positions
(Figure 8). Figure 8 shows that different proteases exhibit
different patterns of coupling between pairs of mutations.
Interestingly, positions where highest destabilization is
observed for single mutations show a high degree of positive
epistasis with all other positions (for example, positions 15 and
16 in the BPTI/BT complex, positions 12, 16, and 36 in the
ChT/BPTI complex, and positions 15, 16, 35, and 36 in the
MT/BPTI complex). On the other hand, cold-spot positions
tend to exhibit negative epistasis with many other positions in
the protein (see, for example, positions 13, 18, 34, and 39 in
the ChT/BPTI complex and position 34 in the MT/BPTI
complex). The average coupling energies are larger for the
highest-affinity BT/BPTI complex, medium for the CT/BPTI
complex, and the lowest for the MT/BPTI complex, in

agreement with the overall dynamic range of ΔΔGbind values
exhibited by the three complexes (Figure S10 in the
Supporting Information). We further analyzed whether
nonadditive mutations of the same ΔΔGbind sign exhibited
antagonistic or synergetic epistasis; that is, the effect of
combination of the two mutations resulted in smaller
(antagonistic) or larger (synergetic) change compared to
additivity. We found that antagonistic epistasis predominated
in all three PPIs with 95%, 78%, and 99% of mutations in the
BT/BPTI, ChT/BPTI, and MT/BPTI complexes, respectively.
When combining a stabilizing mutation with a destabilizing
mutation, affinity improvement was recorded for 92%, 55%,
and 23% of nonadditive double mutations for the BT/BPTI,
MT/BPTI, and ChT/BPTI complexes, respectively.
We further tested whether the degree of coupling between

the two mutations depends on the distance between the
mutated positions (Figure S11 in the Supporting Information).
Our results show that mutations at two closely located
positions could exhibit various degrees of coupling from high
to low. As the distance between positions increases, the average
coupling between the two mutations decreases (Figure S11 in
the Supporting Information). A similar trend has been
observed for all three PPIs and is in agreement with previous
studies in various biological systems.64

■ DISCUSSION

Link between PPI Binding Landscape and Its
Function. In this study we measured quantitative effects of

Figure 8. Coupling energies ΔGi averaged over all detected mutations at a pair of BPTI positions: (A) BT/BPTI interaction; (B) ChT/BPTI
interaction; (C) MT/BPTI interaction. On the top and on the left BPTI positions are shown. The values are color coded from high positive
epistasis (dark red) to additive (green) and to negative epistasis (dark blue).

Figure 9. Schematic illustration of the single mutant binding landscapes for the three studied PPIs. The maximum on the surface corresponds to
the highest possible binding affinity. A star indicates the position of the WT BPTI sequence with respect to the maximum. Arrows illustrate how
single mutations lead to affinity changes in the three complexes.
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tens of thousands of single and double mutational steps in
three homologous enzyme−inhibitor complexes. While the
complexes are similar in their sequences and structures, they
differ greatly in binding affinities that range from ultrahigh to
low. We find that the binding landscape of each PPI depends
strongly on the interaction KD. In particular, the ultrahigh
affinity BT/BPTI complex is highly optimized in its sequence.
Accordingly, the sequence of WT BPTI lies nearly at the
maximum of the single mutant binding landscape (Figure 9),
with only one mutation leading to significant affinity
improvement. The landscape also exhibits a steep gradient,
with a majority of single mutations leading to large steps down
the hill with a maximum drop of ∼12 kcal/mol and an average
drop of 4.5 kcal/mol (Figures 4A and 5A). Such high
destabilizations from single mutations are extremely rare. For
example, the SKEMPI database65 that reports 5079 single
mutant binding affinity changes in various PPIs contains only
16 single mutations (0.3%) with ΔΔGbind values greater than 8
kcal/mol. Functionally, this result means that BPTI cannot
accept mutations at key positions without losing its main
function, i.e., high-affinity binding to BT. The medium-affinity
ChT/BPTI complex shows a lower degree of optimality, with a
larger fraction of single mutations leading to affinity improve-
ment (16%) and a maximum improvement of 2.6 kcal/mol.
Yet even in this complex, single mutational steps could lead to
high complex destabilization of up to 6 kcal/mol. Thus, the
single mutant landscape of the ChT/BPTI complex exhibits a
medium gradient and the WT sequence lies about two-thirds
(6 /(6 + 2.6)) up the landscape hill (Figure 9). One might
expect that the low-affinity MT/BPTI complex would exhibit a
ΔΔGbind distribution that is the opposite of that observed for
the BPTI/BT complex, with a high number of mutations that
lead to a very large improvement in binding affinity. Yet, this is
not what we observed in the present study. The MT/BPTI
complex indeed exhibits the highest fraction of mutations
leading to affinity improvement among the three complexes
(22%), but the largest improvement due to a single mutation
does not exceed 1.9 kcal/mol, smaller than what is observed
for the ChT/BPTI complex. Yet, the reduction in binding
affinity due to single mutations is also the smallest for the MT/
BPTI complex, not exceeding 3 kcal/mol. Thus, we conclude
that the difference between the MT/BPTI and BT/BPTI
complexes is not only the location of their sequences relative to
the maximum of the binding landscape but the single mutant
landscapes themselves show different gradients, high for the
high-affinity complex and low for the low-affinity complex
(Figure 9).
The binding landscape characteristics of the three studied

PPIs have been dictated by their evolutionary history. BPTI
has coevolved with BT to optimize their affinity for each other,
as a mechanism to protect the pancreas. Activation of trypsin is
normally catalyzed by enteropeptidase in the duodenum and
serves as a the master regulatory step in digestive enzyme
activation, since trypsin is the common activator of all other
pancreatic zymogens.66 Premature autoactivation of trypsin in
the pancreas can cause a runaway activation cascade, leading to
tissue damage, inflammation, and pancreatitis.66 Thus, BPTI
and other potent pancreatic trypsin inhibitors have evolved to
regulate this key digestive enzyme. Humans do not possess an
exact ortholog of BPTI, but the same biological protective
function is filled by SPINK1,66 another canonical trypsin
inhibitor that has coevolved with human trypsin.

By contrast, ChT and MT are not susceptible to
autoactivation and lack specific endogenous coevolved
inhibitors in the mammalian pancreas. They bind to BPTI
due to their sequence and structural homology to BT and due
to the preconfiguration of the BPTI binding loop in canonical
conformation with complementarity to conserved features of
the serine protease active site.51,52 These nonoptimized PPIs
notably show weaker affinity than that exhibited by BPTI/BT.
The interaction with MT is particularly weak, despite the
similar specificity of BT and MT for cleavage after Lys/Arg,
due to the evolution of MT for widespread natural resistance
to the canonical trypsin inhibitors such as BPTI.67,68

Furthermore, by binding to these inhibitors orders of
magnitude more weakly than other trypsins, MT has evolved
the capability to cleave many proteinaceous trypsin inhibitors
as substrates.54,56,69−71 The influence of this evolutionary
adaption on the MT/BPTI interaction is consistent with our
finding that no single or double mutation on the BPTI side
could convert this complex into a high-affinity PPI. We
anticipate that BPTI may yet be converted to a high-affinity
inhibitor of MT but in this case requiring a greater number of
combined mutations. Consistent with such a possibility, APPI,
a human BPTI paralog with 44% sequence identity, binds to
MT ∼100-fold more tightly (KD ≈ 10−7 M),50 while triple and
quadruple mutants of APPI identified by directed evolution
can bind to MT more than 1000-fold yet more tightly (KD <
10−10 M).72,73

Comparison of Cold-Spot and Hot-Spot Locations in
the Three PPIs. Cold-spots are positions in proteins that are
occupied by nonoptimal amino acids; at such positions,
multiple mutations lead to functional improvement. In this
study we analyzed cold-spot and hot-spot locations on BPTI
and found several notable differences between the three
studied PPIs. The most prominent difference is observed at
position 15, which is nearly a hot-spot in the BT/BPTI and the
MT/MPTI complexes but is a cold-spot in the ChT/BPTI
complex. This central to the binding interface position is
occupied by Lys in WT BPTI, which fits perfectly in the BT
specificity pocket, where it participates in a network of
hydrogen bond interactions with several polar residues on BT
(Figure S12 in the Supporting Information). The K15 binding
pocket is completely conserved in the MT/BPTI complex. In
agreement with structural identity of the MT binding pocket,
all mutations but mutation to Arg at position 15 result in
destabilization of the MT/BPTI complex, yet mutational
changes are smaller in comparison to those exhibited by the
BT/BPTI interaction. On the contrary, in the ChT/BPTI
interaction, mutations to all hydrophobic amino acids at
position 15 lead to improved affinity. Here, slight differences in
the ChT specificity pocket prevent the formation of the
hydrogen bond network with K15 of BPTI; hence K15 exhibits
a different, less buried conformation, avoiding unfavorable
charge burial (Figure S12 in the Supporting Information).
Additional differences in cold-spot and hot-spot locations

are observed at the periphery of the BPTI/protease binding
interface, where they could be explained from the structural
perspective. Affinity-enhancing mutations at cold-spots could
occur either through removal of an unfavorable interaction
with the partner protein or through introduction of a new
favorable interaction, where no interaction exists.49 We
observed the first scenario occurring in the MT/BPTI complex
at position 17, where an Arg on BPTI is found in close
proximity to Arg 193 on MT, resulting in unfavorable charge
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repulsion (Figure S13 in the Supporting Information). As our
experimental data show, substituting Arg 17 with a small and/
or hydrophobic amino acid results in affinity improvement
(Figure 4C). On the contrary, Arg 17 is found in a largely
hydrophobic environment in the ChT/BPTI complex; its
replacement with a hydrophobic Met and Leu results in slightly
negative ΔΔGbind values (Figure 4B). A similar scenario is
observed at position 39, which is a cold-spot in the MT/BPTI
and ChT/BPTI complexes but a hot-spot in the BT/BPTI
complex. Here, Arg 39 on WT BPTI is found in close
proximity to Lys 175 on MT and ChT; Arg 39 substitution by
a noncharged residue, such as Trp, results in affinity
improvement in both complexes (Figure S14 in the Supporting
Information). In the BT/BPTI complex, position 175 is
occupied by Gln, which forms a hydrogen bond with Arg 39 on
BPTI, explaining the hot-spot nature of this position in the
BT/BPTI complex.
We observe the second scenario for cold-spot formation at

position 34 in the ChT/BPTI and MT/BPTI complexes. Val
34 at this position does not form any interactions with these
proteases. Its replacement with larger hydrophobic amino acids
that bury additional surface area increases affinity to ChT. Its
replacement with polar or negatively charged residues
improves affinity to MT by likely forming new hydrogen
bonds to Tyr 151 and/or Gln 192 on MT.
Epistasis in Protease/BPTI Complexes. Using the data

for tens of thousands of double mutants we were able to
analyze how two mutations are coupled in the three protease/
BPTI complexes. Our data show that in all three BT/BPTI
complexes a large proportion of double mutations results in
positive epistasis and only a minority of mutations produces
negative epistasis. We also observe the predominance of
antagonistic epistasis vs synergetic epistasis. This absence of
symmetry is at least partially due to the absence of highly
destabilizing double mutations from our data. The abundance
of positive epistasis in the BT/BPTI interaction could be
explained from the perspective of binding landscape theory
(Figure 9). Due to the steepness of the gradient in the area of
the wild-type BPTI sequence, the first mutation in this PPI
leads to a large step down the hill into the area of low gradient.
A second mutation from this point could lead up or down, but
the change would be relatively small, resulting in positive
epistasis, i.e., better ΔΔGbind compared to what would be
predicted from additivity of the two highly destabilizing
mutations. Positive epistasis particularly predominates at
positions where the largest affinity drops are recorded (such
as at positions 15 and 16 for the BT/BPTI complex or position
12 for the ChT/BPTI complex), where the gradient is steep.
Positive epistasis could be also explained from the structural

perspective. Highly optimized PPIs usually retain their original
binding conformation upon introduction of a single mutation
due to the abundance of favorable interactions generated at
nonmutated positions. Yet, if any of the hot-spot residues is
mutated (such as K15 in the BPTI/BT and BPTI/MT
complex), substantially weakening the interaction, then the
impact of a second deleterious mutation may be mitigated by
an increase in flexibility at the interface, enabling the protein to
adopt alternative conformations that introduce new favorable
intermolecular contacts and enhance affinity. If the same
mutation would occur on the background of the wild-type
residue in the hot-spot position, the new conformation would
not be accessible and the affinity enhancement would not be
achieved. Thus, such a double mutant would possess better

ΔΔGbind compared to the sum of single mutants, exhibiting
positive epistasis.
On the contrary, negative epistasis is more frequent for

medium- and low-affinity PPIs and appears mostly when one
mutation is performed at a cold-spot position. If the first
mutation improves binding affinity and thus makes a step up
the binding landscape toward the maximum, the second
mutation would be made from the point of steeper gradient
and is likely to make a large step down, thus resulting in
negative epistasis. Structurally that means that if at one cold-
spot position a new favorable interaction was created, this
interaction might lock the PPI into a new slightly different
conformation. Another conformation might be acquired upon
introduction of a different affinity-enhancing mutation. But the
two favorable conformations could not be achieved simulta-
neously, resulting in worse ΔΔGbind for a double mutation
compared to the sum of two single mutations (negative or
antagonistic epistasis).
In summary, in this study we report ΔΔGbind values for tens

of thousands of single and double mutations in three protease/
BPTI complexes with similar structures but highly variable
binding affinities, thus generating an unprecedented amount of
mutational data that could be used as a benchmark for testing
new computational methodology and for the design of new
high-affinity protease inhibitors. Using the obtained data, we
demonstrate striking differences between the single mutant
binding landscapes of the three PPIs that could be explained by
the level of the PPI evolutionary optimality. Furthermore, we
study how two single mutations in these PPIs couple to each
other and demonstrate that the coupling energy depends not
only on positions of mutations but also on the identities of the
mutated amino acid. Furthermore, we observe that mutations
at hot-spot positions generally exhibit positive epistasis with
other mutations, while mutations at cold-spot positions
generally exhibit negative epistasis and explain this phenom-
enon from the perspective of binding landscape theory. Our
powerful experimental methodology could be used to access
the binding landscapes in many additional PPIs with different
structures, functions, and affinities and to probe whether the
reported evolutionary trends hold in other biological systems.

■ METHODS
BPTI Library Construction. Twelve positions on BPTI that lie in

the binding interface with BT (PDB ID 3OTJ) were subject to
randomization: T11, G12, P13, K15, A16, R17, I18, V34, Y35, G36,
G37, and R39. A BPTI library was constructed that randomized two
positions at a time with an NNS codon (where N = A/C/G/T DNA
base, S = C/G DNA base), encoding all amino acids at the
randomized positions, including the WT amino acid. The library was
divided into 66 sublibraries that each incorporates all possible pairs of
the 12 randomized positions. The TPCR protocol74 was used to
create each library using two primers that either combined two
mutations in one primer or divided them into two primers depending
on their proximity to each other (Supplementary Note 1 in the
Supporting Information). These primers were used in a PCR together
with the BPTIWT plasmid to incorporate these mutations at the
specific positions in BPTI and to amplify the whole plasmid. Agarose
gel analysis was used to confirm the success of each TPCR reaction.
The TPCR-amplified plasmid DNA was treated with DpnI (New
England Biolabs, Ipswich, MA, USA) to remove any parental plasmid
used as a template to construct the library, cleaned up with magnetic
beads (AMPure XP, Beckman Coulter, Brea, CA, USA), and
transferred into E. coli, and selected colonies were sequenced to
confirm the successful generation and transformation of the BPTI
library. The vectors containing the BPTI library were extracted using
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QIAprep Spin miniprep (Qiagen, Hilden, Germany), and all the
sublibraries were pooled together and balanced by their DNA amount
to use the same amount of DNA from each sublibrary (∼3.6 μg).
Then, the pooled library was transferred into S. cerevisiae using 20
transformations, resulting in 60 000−70 000 colonies for the complete
library as estimated by plating 1/20 the amount of the library sample
and counting the colonies after transformation on a SDCAA plate.
YSD Sorting Experiments. Yeast cells displaying the BPTI

library or the BPTIWT with a cMyc-tag at the C-terminus on the YSD
were grown in SDCAA selective medium and induced for BPTI
protein expression with a galactose-containing SGCAA medium as
previously described.72 BPTI expression and binding to individual
proteases were detected by incubating approximately 1 × 106 yeast
cells with a 1:50 dilution of mouse anti-cMyc antibody (9E10, Abcam,
Cambridge, UK) in 1× phosphate-buffered saline (PBS) supple-
mented with 1% bovine serum albumin (BSA, Thermo Fisher
Scientific, Waltham, MA, USA) for 1 h at room temperature, washed
with ice-cold 1× PBS, and then incubated with different
concentrations of biotinylated BT (biotin and biotinylation protocol
from Thermo Fisher Scientific) in 1× PBS with 1% BSA for 1 h at
room temperature. Thereafter, cells were washed with ice-cold 1×
PBS, followed by incubation with a 1:50 dilution of phycoerythrin
(PE)-conjugated anti-mouse secondary antibody (Sigma-Aldrich, St.
Louis, MO, USA) and NeutrAvidin (Thermo Fisher Scientific)
conjugated with FITC in 1× PBS with 1% BSA for 20 min on ice.
Finally, the cells were washed with ice-cold PBS, and the fluorescence
intensity was analyzed by dual-color flow cytometry (Accuri C6, BD
Biosciences). The yeast cells were next sorted into four populations
by FACSAria (BD Biosciences, San Jose, CA, USA) including HI,
WT, SL, and LO populations. Sorted cells were then grown in a
selective medium, and the plasmidic DNA was extracted for each of
the sorted population and the naiv̈e library and submitted to NGS by
MiSeq, Illumina (service provided by Hylabs, Rechovot, IL, USA).
NGS Analysis. The paired-end reads from the NGS experiments

were merged,75 and their quality scores were calculated in the FastQC
tool (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/).
In the Matlab script, the sequences were aligned, and sequences
containing extra mutations at nonrandomized positions were filtered
out. The number of each remaining BPTI mutant i was counted in the
sorted and the naiv̈e populations, and its frequency f i in the libraries
was calculated (eq 2). Using the frequency of the mutant in one of the
sorted populations and the naiv̈e population, the enrichment ei of each
BPTI mutant was calculated (eq 3).
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To estimate the uncertainty in BPTI mutant frequencies, we applied a
bootstrapping method to the NGS data for all sorted gates and the
naiv̈e library as described in ref 76. Briefly, the original NGS data were
used to randomly draw sequences to obtain a resampling data set of
the same size and to calculate the frequency of each BPTI mutant in
each population. The resampling process was repeated 1000 times,
and the average frequency and the standard deviation were calculated
from 1000 resampling data sets for each BPTI mutant in each sorting
gate and in the naiv̈e library. The error was propagated into eqs 2 and
3 to calculate the error in enrichment values:
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The error values in enrichment values were propagated to calculate
the errors in ΔΔGbind predictions.

Predicting ΔΔGbind Values from NGS Data. All available
experimental data on ΔΔGbind for the BPTI/protease complexes were
used to obtain the best normalization formulas for each complex for
converting enrichment values from the four sorted populations into
ΔΔGbind values. To this end, we used a linear regression model
function in Mathematica (Wolfram Research) with five parameters (Y
= aX1 + bX2 + cX3 + dX4 + f) if all four enrichment values were
available in our NGS data for this particular mutation. The parameters
a, b, c, d, and f were optimized using the experimental data set as
values of Y and the set of X1, X2, X3, and X4 enrichment values. The
obtained normalization formula (different for each protease) was used
to calculate ΔΔGbind values for all the remaining single and double
BPTI mutants that had four enrichment values recorded in the NGS
experiment.

The standard deviation of ΔΔGbind predictions for each BPTI
mutant was calculated according to the formula

σ = ∂ + ∂ + ∂ + ∂ + ∂ + ∂ + ∂ + ∂ + ∂a X b X c X d X X a X b X c X d f( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1
2
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3
2

4
2

1
2

2
2

3
2

4
2 2

(5)

Where a, b, c, d are the coefficients in front of X1, X2, X3, and X4,
respectively; ∂X1, ∂X2, ∂X3, and ∂X4 are the standard deviations on
these variables obtained from the bootstrapping analysis of the NGS
data, and ∂a, ∂b, ∂c, ∂d, and ∂f are the standard deviations of these
coefficients obtained from the leave-one-out analysis. To make
ΔΔGbind prediction for mutants where fewer than four enrichment
values were available, we repeated the normalization procedure using
different subsets of enrichment values (such as X1 and X4; X1, X2, X3;
etc.). Accordingly, we varied the number of parameters in the
normalization formula. We checked whether high correlation with the
experimental data set of ΔΔGbind values could be obtained using this
particular subset of variables as predictors. If a correlation of R > 0.80
was obtained between the predicted and the experimental ΔΔGbind
values, the set of gates was selected as good for making predictions.
Additional cross check for validity of predictions from this subset of
gates was performed by comparing ΔΔGbind predictions for all single
mutants based on all four gates and based on the selected subset of
gates and confirming high correlation between the two predicted
ΔΔGbind values over all single mutations. For each of the mutants, we
used the available enrichment values to make separate predictions
from all possible “good” subsets of gates. First all predictions were
recorded for mutants where enrichment values were available for all

four gates. For mutants where predictions were available for only gates
X1, X2, and X4, predictions were made based on these three gates
providing that this set of gates was defined as good. For mutants
where predictions were available in only gates X1 and X4 predictions
were made based on these two gates if this set of gates was defined as
good for predictions. For each prediction from each subset of gates,
the uncertainty of the prediction was calculated by propagating an
error from the enrichment values (see ref 57 for details). Finally, for
each mutation, ΔΔGbind prediction was selected from all the
predictions according to the subset of gates where the highest
correlation with experimental data was observed. The data set of final
ΔΔGbind predictions for all single and double mutants for the three
PPIs could be found in the Source Data file.

Production of BPTI Variants. The BPTIWT sequence was cloned
into a pPIC9K vector (Invitrogen, Carlsbad, CA, USA), and TPCR
was used for site-directed mutagenesis to create the sequences of all
variants, transformed, expressed in P. pastoris (GS115 strain; obtained
from Invitrogen) and purified by nickel affinity chromatography,
followed by size-exclusion chromatography, as described in a previous
work.72 The correct DNA sequence of each produced protein was
confirmed by extracting the plasmidic DNA from P. pastoris after
protein purification by nickel chromatography, amplifying the BPTI

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.1c08707
J. Am. Chem. Soc. 2021, 143, 17261−17275

17272

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://pubs.acs.org/doi/suppl/10.1021/jacs.1c08707/suppl_file/ja1c08707_si_001.xlsx
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.1c08707?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


gene and sequencing it. Protein purity was validated by SDS-PAGE on
a 20% polyacrylamide gel, and the mass was determined with a
MALDI-TOF REFLEX-IV (Bruker) mass spectrometer (IKI, BGU;
data not shown). Purification yields for all BPTI variants were 2−15
mg per liter of medium. The concentration of purified BPTI variants
was determined by an activity assay.
For MT, values of the inhibition constant (Ki) were determined

using a general enzyme activity essay for PPIs characterized by
medium to low affinity.72 Here, 304 μL of BPTI (four different
concentrations ranging from 5.2 to 52.6 μM) was mixed with 8 μL of
the substrate Z-GPR-pNA (Sigma-Aldrich) (five different concen-
trations ranging from 0.4 to 10 mM). The mix was incubated for 3
min. Then, the reaction was initialized by adding 8 μL of MT (10
nM) and the absorbance of the samples was measured at a wavelength
of 410 nm for 5 min. A negative control was added replacing BPTI
with 304 μL of buffer (10 mM Tris, pH 8, 1 mM CaCl2). The range
of concentrations of BPTI was adapted when the determined Ki was
not in the range of these BPTI concentrations.
For MT, the Ki could be determined from eq 6, as described

previously.72
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The change in experimental binding energy ΔΔGbind was calculated
from eq 7 using the Ki of the WT and the mutant, the temperature T
at which the affinity was measured, and the ideal gas constant R.
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K
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i

i (7)

Analysis of Additivity and Cooperativity. For each double
mutation with available ΔΔGbind prediction, we calculated the
interaction energy between the two single mutations according to
eq 1.
The mutation was defined as exhibiting negative epistasis if ΔGi

was negative within the uncertainty of the predictions, that is,

δ δ
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Here, δΔΔGbind
X , δΔΔGbind

Y , and δΔΔGbind
XY are uncertainties in

prediction of ΔΔGbind for mutation X, Y, and XY, respectively.
The mutation was defined as exhibiting positive epistasis if ΔGi was

positive within the uncertainty of the predictions, that is,

δ δ
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Δ = ΔΔ + ΔΔ − ΔΔ + ΔΔ

− ΔΔ − Δ >
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i bind bind bind
2

bind
2

bind bind (9)

If the value of ΔGi fell between the values of positive or negative
epistasis, the mutation was defined as additive.
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