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ABSTRACT: Here, we report the implementation and application of a
simple, structure-aware framework to generate target-specific screening
libraries. Our approach combines advances in generative artificial
intelligence (AI) with conventional molecular docking to explore
chemical space conditioned on the unique physicochemical properties
of the active site of a biomolecular target. As a demonstration, we used
our framework, which we refer to as sample-and-dock, to construct
focused libraries for cyclin-dependent kinase type-2 (CDK2) and the
active site of the main protease (Mpro) of the SARS-CoV-2 virus. We
envision that the sample-and-dock framework could be used to generate
theoretical maps of the chemical space specific to a given target and so
provide information about its molecular recognition characteristics.

■ INTRODUCTION

Developing new drugs is costly and time-consuming; by some
estimates, bringing a new drug to market requires ∼13 years at
a cost of ∼US $1 billion.1 As such, there is a keen interest in
accelerating the drug development pipeline and reducing its
cost. In principle, computer-aided drug development can both
accelerate and lower the cost of identifying viable drug
candidates.2 For instance, during hit identification, where the
goal is to identify small molecules that bind to the target, one
could restrict testing to only the compounds that are predicted
to bind to the target with high affinity. However, the
computational cost of screening large chemical libraries can
still be burdensome. The computational cost of virtual
screening could be reduced by working with smaller and
more focused, target-specific virtual libraries, enriched in
compounds that are likely to bind to a specific site of the target
of interest.3

Such target-specific libraries can be constructed by carrying
out de novo design, during which compounds are designed on-
the-fly, guided by the unique physicochemical properties of the
active site of the target.4−17 However, because of the difficulty
in formalizing diverse reaction rules and implementing robust
algorithms to intelligently apply them, such de novo design
frameworks often produce synthetically inaccessible com-
pounds. Fortunately, advances in generative artificial intelli-
gence now make it possible to design both chemically novel
and synthetically feasible compounds in silico.18−23 Note-
worthy among these frameworks are those based on
autoencoders. Autoencoders are unsupervised machine learn-
ing models that, by virtue of their architecture, are able to learn
a compact, latent space representation of chemical space when

trained with molecular data. The task of designing target-
specific libraries can, therefore, be cast as one of exploring the
latent space of such models, conditioned on the unique
properties of the active site of the target of interest. Currently
lacking, however, are efficient, structure-aware strategies for
sampling the latent space of generative molecular models. Such
techniques could find utility in constructing target- and site-
specific virtual libraries that are likely to contain hit
compounds that, if synthesized, might bind to the targeted
site. More immediately, they could be used to construct a
ligand-based pharmacophore model that can be used to screen
millions of compounds in a matter of seconds.24

Here, we tested and implemented a novel, structure-based
framework for constructing target-specific libraries by sampling
the latent space of generative machine learning models
conditioned on the unique physicochemical properties of the
active site of a target. We reasoned that we could implement
such a pipeline by combining generative molecular machine
learning models with molecular computer docking algorithms.
For instance, one could start by embedding a reference
compound, e.g., benzene, into the latent space of a generative
autoencoder model and sample latent space points in its
neighborhood. The sampled points can then be decoded into
their corresponding three-dimensional (3D) representations
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and docked onto the target (Figure 1a). The sampled
compound that is predicted to interact most favorably with
the active site can be identified and then used as the new
reference. The process can be repeated (Figure 1b), and in so
doing, the latent space of a generative molecular model (and,
by extensions, chemical space) can be explored in a
semidirected manner, conditioned on the properties of the
active site of the target. The compounds sampled during this
iterative (“sample-and-dock”) process can then be used to
construct a target-specific virtual library.

■ METHODS

Sample-and-Dock. To construct structure-aware and
target-specific virtual libraries, we implemented a conditional
generative sampling scheme referred herein to as sample-and-
dock, which combines a pretrained generative variational
autoencoder (VAE) model with molecular docking (see
below). In sample-and-dock, the exploration of the latent
space of a pretrained generative model is made conditional on
the unique physicochemical and biophysical properties of the
binding site on a target, , using a greedy algorithm that
optimizes a cost function that is dependent on the properties
of the target. Here, we used a molecular docking scoring
function as the cost function in our greedy algorithm.
Accordingly, given a set of latent space samples, the “best”
sample is selected as the one that, when decoded into its
molecular representation, yields the highest binding affinities (

i) or, equivalently, the lowest docking score ( i), as
estimated using a molecular docking scoring function.
Briefly, to construct a customized target-specific library using

this conditional sampling scheme, we first embed a reference
compound in the latent space of a generative model (mi → zi)
and then sample a set of points {zi+1} in the “neighborhood” of
the reference zi. The {zi+1} can then be decoded (zi+1 →
mi+1,D), and the resulting molecules are docked into the active
site of . Using a greedy optimization strategy, the “best” of
these designed molecules can be identified using the docking-
derived +i 1 and is then used as the new reference for the next
round of sample-and-dock. The process is then repeated over

many cycles to explore the chemical space in a semidirected
manner and conditioned on the properties of .

Implementation. Using a set of in-house Python scripts,
we implemented a sample-and-dock pipeline that interfaces the
junction-tree-variational autoencoder (JTVAE) model of Jin
and co-workers25 and the molecular docking program rDock.26

The JTVAE model utilizes two latent spaces, referred to as the
tree space and molecular graph space. The tree space maps the
topological node-and-edge graph of the molecule, and the
molecular graph space fits the node-and-edge graph with the
appropriate atoms or substructures. The developers of the
JTVAE model used a vocabulary of scaffolds extracted from the
training set in the SMILES (Simplified Molecular-Input Line-
Entry System) format. They then jointly trained two encoders,
one for tree space and the other for the molecular graph space.
The associated decoder was trained together with the encoders
to reconstruct the SMILES from the two latent vectors
produced by the encoders. Once trained, the model learned an
efficient mapping of molecules in the high-dimensional latent
space. During initial tests, we observed that this mapping
produced by the JTVAE exhibited the crucial property that the
distance between vectors was proportional to the similarity/
dissimilarity between the molecules. Therefore, we used this
latent space to represent the chemical space in which we
perform structure-aware sampling.
All instances of sample-and-dock were initialized using

benzene. At the start of each cycle, the seeding molecule was
taken in the form of SMILES strings and converted into one-
hot encoding according to a set of predefined vocabulary of
531 unique molecular scaffolds SMILES extracted from
MOSES data set.27 The one-hot encoding was first trans-
formed into a set of two 28-dimensional vectors by the
encoders of JTVAE as locations in the two latent spaces. The
latent vectors were then resampled and reconstructed
(decoded to SMILES strings) 20 times by the decoders to
generate 20 unique molecules that resemble the seed. For each
generated molecule, the SMILES string was converted to a 3D
structure using RDKit and then docked into the active site on
the target using rDock. Across all of the generated molecules
within the cycle, the designed molecule with the highest i, as
estimated using the rDock scoring function, was used as the

Figure 1. (a) Illustration of how latent spaces can be used to generate new molecules. For a reference point in a learnt latent space (1), which is
associated with some reference molecule (1′), additional points within its neighborhood can be sampled (e.g., 2 and 3) and decoded to generate
new molecules (e.g., 2′ and 3′). These new molecules can then be used for docking. (b) Illustration of the “sample-and-dock” framework, which we
propose for the generation of target-specific libraries. The pipeline is initialized using a starting scaffold (e.g., benzene), which is projected into the
latent space of the generative AI model (here, the pretrained junction-tree variational autoencoder (JTVAE) of Jin et al.25). Points in its
neighborhood are sampled and decoded to generate a set of N designs. The N designs are individually docked onto the target, and the M best
designs are selected based on their docking scores and projected back into the latent space to seed the next cycle. In the simplest case, M = 1.
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seed molecule for the next cycle. The process is then repeated
over many cycles, and the best compound from each cycle is
used to construct the final library. We note that for a new
generation, it is the latent space representation of the best
design that was used to seed the next cycle.
Within this sample-and-dock pipeline, docking is initialized

using coordinate files for the receptor and a ligand file. The
ligand file is used to identify the precise location of the pocket
into which focused docking will be carried out and for which a
target-specific library will be generated. To select the best
design during each cycle, we used the interaction component
of the dock score (SCORE.INTER). After the final cycle, the
collection of structures is combined into a single library and
saved as an SDF-formatted file.
Target-Specific Libraries. We used our sample-and-dock

pipeline to construct target-specific libraries for CDK2 and
SARS-CoV-2 Mpro. For CDK2, sample-and-dock was carried
out using the crystal structure of CDK2 bound with Roniciclib
(PDB ID: 5IEV).28 For SARS-CoV-2 Mpro, we used the crystal
structure Mpro bound to N3 (PDB ID: 6Y2F).29 From the
crystal structures, the ligands and receptors were separated and
saved as separate coordinate files using PyMOL. To map the
active sites of each target, the PDB-formatted receptor
coordinate files were converted to the SYBYL MOL2 format
using OpenBabel.30 Using the MOL2 receptor file, cavity
mapping was carried out using the reference-ligand method
that is implemented in the rbcavity tool from rDock. For
the reference-ligand method, the radius of the overlapping
sphere was set to 7.0 Å, and the radius of the small probe was
set to 1.5 Å. To prepare the designs for docking, the SMILES
string was first converted into graph-based representation by
RDKit, and the 3D coordinate is generated using ETKDG
algorithm implemented with RDKit.31 Receptor charges are
internally assigned in rDock based on substructures and atom
names, whereas ligand charges are assigned based on atom
number, hybridization, and formal charge.26 For both CDK2
and Mpro, sample-and-dock was initialized using benzene and
run for 48 hours on a 16-core x86 Intel(R) Xeon(R) CPU E5-
2650 v3 @ 2.30GHz node, resulting in 27 810 and 28 134
ligands for CDK2 and Mpro, respectively. We note that we
chose to generate the libraries over the course of 48 hours
because a set of independent preliminary tests, carried out for
CDK2, revealed that over the resulting 1600 cycles, the value
of the lowest docking score sampled tended to plateau (Figure
S1).
Visualizing Target-Specific Libraries. To visualize the

libraries, we used tree-maps (TMAPs), a locally sensitive

hashing forest constructed with MinHash fingerprints of the
molecular structures.32 Given a collection of high-dimensional
items, TMAP generates a two-dimensional (2D) embedding
within a tree-like structure, containing branches and sub-
branches. Within this tree, items are essentially clustered into
branches and then sub-branches based on the pairwise
similarity; the distances between clusters are encoded in the
distance between the branches and sub-branches. As such,
TMAPs can encode the hierarchical, global-to-local structure
within a high-dimensional data set.
Starting from the SMILES of our designs, we generated

TMAPs by first computing their MHFP6 (512 MinHash
permutations) molecular fingerprints of the compounds in the
libraries.32 The individual libraries were then visualized by
exporting the 2D, TMAP coordinates to an interactive HTML
file using the Python module Faerun,33 which uses the
JavaScript library SmilesDrawer34 to visualize 2D structures
within our library. To aid in the examination of the
distributions within the TMAP-space, points were color-
coded using docking scores, synthetic accessibility (i.e., SA),
and drug-likeness (i.e., QED). The interactive maps can be
accessed at https://atfrank.github.io/SampleDock/vis_maps/
tmap_CDK2_20designs_all.html (for CDK2) and https://
atfrank.github.io/SampleDock/vis_maps/tmap_mpro.html
(for Mpro).

■ RESULTS
CDK2 Library. First, we implemented a sample-and-dock

pipeline (Figure 1b) by interfacing the junction-tree variational
autoencoder (JTVAE)25 with the docking program, rDock.26

We then used it to construct a target-specific library for the
cyclin-dependent kinase 2 (CDK2) protein. We chose CDK2
because it is an important therapeutic target that has been
extensively studied biochemically and structurally and for
which a large library of known inhibitors is readily accessible.35

For this CDK2 test case, we initiated sample-and-dock pipeline
by first mapping the CDK2 active site using the crystal
structure of CDK2 complexed with Roniciclib (PDB: 5IEV).28

The JTVAE−rDock sample-and-dock pipeline was then
initialized using benzene as a starting scaffold. We chose to
use benzene as the starting scaffold because it is small and a
chemical motif that is ubiquitous in known drugs. Each
sample-and-dock cycle consisted of sampling and docking 20
unique compounds. For each compound, 100 poses were
generated during docking. The compound with the lowest
docking score was selected and used as the input scaffold for
the next cycle of sample-and-dock (Figure 1b).

Figure 2. Computed properties of compounds designed to target the active site of CDK2. The distributions of (a) the quantitative estimate of
drug-likeness (QED) and (b) the synthetic accessibility scores are shown.
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Figure 3. Representative compounds in our sample-and-dock library that closely resemble known inhibitors of CDK2. The substructures that are
identical to those found in the most similar compound in our sample-and-dock virtual library are highlighted.

Figure 4. TMAP of best designs against the CDK2 target. TMAPs with (a) our sample-and-dock designs and (b) the top known CDK2 inhibitors
found in the DrugBank are shown. The sample-and-dock designs are color-coded based on docking scores. The corresponding interactive TMAP
can be accessed via https://atfrank.github.io/SampleDock/. The boxes highlight regions in the TMAP where sample-and-dock designs with low
docking scores are near CDK2 inhibitor hits.
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To explore the quality of the compounds sampled during
sample-and-dock, we computed the distribution of their drug-
likeness (estimated using the quantitative estimate of drug-
likeness, QED,36 score) and synthetic feasibility (estimated
using their synthetic accessibility score, SAS).37 Though there
are exceptions, compounds suitable for initializing drug
development typically exhibit QED and SAS → 1.0. For
CDK2, the sample-and-dock molecules exhibited mean QED
and SAS values of ∼0.80 (Figure 2a) and 2.5 (Figure 2b),
respectively.
To examine whether the compounds explored during

sample-and-dock resemble known inhibitors of CDK2, we
computed their chemical similarity to known CDK2 inhibitors.
Briefly, we identified known CDK2 inhibitors within the

DrugBank35 and calculated the Tanimoto coefficient between
the chemical fingerprints (RDKit fingerprint) of the known
inhibitors and the sample-and-dock compounds. Despite
initializing sample-and-dock with just benzene, we found that
we were indeed able to sample designs that closely resemble
known CDK2 inhibitors (Figure 3). Interestingly, when we
projected the sample-and-dock designs along with known
CDK2 inhibitors within a tree-map (TMAP), some of the
known CDK2 inhibitors are located in branches that are near
low-scoring sample-and-dock designs (Figure 4). Though
some of the sample-and-dock designs resembled known
inhibitors, the mean Tanimoto coefficient was only ∼0.35
(Figure S2), confirming that the majority of them were indeed

Figure 5. Path to designs resembling known CDK2 inhibitors. For each of the eight designs in our library that most resembled known CDK2
inhibitors, we show the trace of the maximum chemical similarity relative to the design as a function of the cycle. We highlighted the sub-sub-
structures that are identical to those found in the most similar compound in our sample-and-dock virtual library.
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distinct from previously identified inhibitors and thus our
library was indeed populated with novel designs.
To gauge when, during the 1533 design cycles, we sampled

the 8 designs that were most similar to known CDK2
inhibitors, we determined their chemical similarity to each
compound in the library and plotted the maximum similarity as
a function of the design cycle. Figure 5 shows traces of the
cumulative maximum chemical similarity for these eight
designs as a function of the design cycle. We found that with
the exception of designs 4 and 8, ∼1000 cycles (∼224 CPU
core-hours) are typically needed to sample the compounds that
resemble known CDK2 inhibitors.

To check if, despite using a greedy, local search algorithm,
we were able to generate molecules with docking scores on par
with known CDK2 inhibitors, we docked the known inhibitors
to the same receptor and same pocket we used for sample-and-
dock. We then compared the docking score distribution of the
known inhibitors to that of our sample-and-dock molecules.
For reference, we also docked and compared these
distributions to those of a set of molecules randomly sampled
from the latent space of the JTVAE and the MOSES data set,
respectively. Relative to the JTVAE and MOSES distributions,
our sample-and-dock library exhibits better overlap with the
docking score distribution of the known CKD2 inhibitors

Figure 6. (a) Twenty additional scaffolds we used to constructing CDK2-specific libraries. Panel (b) shows the pairwise Wasserstein distance
between the library-seeded benzene and libraries seeded with the other 20 scaffolds (a). The pairwise Wasserstein distances within the tree space
and molecular graph space of the JTVAE are shown. (c) For reference, we also show the distribution of the pairwise Wasserstein distance between
samples in successive cycles of sample-and-dock.
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Figure 7. (a) Examples of three potential inhibitors (SD-2020-1, -2, and -3) designed using the sample-and-dock approach. The predicted poses of
these compounds, docked into the active site of SARS-CoV-2 Mpro, are shown. These three molecules were identified by first clustering the sample-
and-dock library and then selecting the top-10 scoring clusters. The synthetic accessibility of the representative design in these 10 clusters was then
accessed using expert chemical intuition. The three designed presented here were deemed to be the most synthetically accessible among the 10
representative designs. (b) Ligand interaction maps of the docked poses. Docking predicts that the SD-2020-1 and SD-2020-3 interact with the
catalytic residue Cys145 and SD-2020-2 interacts with the catalytic residue His41. (c) Known drugs that were most similar to compounds in our
sample-and-docking Mpro library. Sub-sub-structures that are identical to those found in the most similar compound in the virtual library are
highlighted.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.1c00746
J. Chem. Inf. Model. 2021, 61, 5589−5600

5595

https://pubs.acs.org/doi/10.1021/acs.jcim.1c00746?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00746?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00746?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00746?fig=fig7&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.1c00746?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(Figure S11). We also found that we were about to better
recover the molecules that most resemble CDK2 inhibitors
from our sample-and-dock library (ROC AUC = 0.63) than
either of the set of JTVAE (ROC AUC = 0.49) or MOSES
(ROC AUC = 0.53) molecules (Figure S12).
To examine the impact of the initial scaffold choice on the

library that emerges from our sample-and-dock pipeline, we
repeated designs using a set of 20 unique scaffolds (Figure 6a).
The scaffolds were selected by ranking the cumulative
occurrences of unique member compounds in ChEMBL20,
as reported by Zdrazil et al.38 The individual libraries
generated using these 20 scaffolds were compared to the
initial library generated using benzene. For this comparison, we
used the Wasserstein distance.39−41 The Wasserstein distance
measures the overlap between two distributions by quantifying
the mean distances points in a given sample need to be moved
to maximize the overlap between two distributions. As such,
we used it to compare the distributions in the latent space of
the libraries generated using benzene as the initial scaffold to
the libraries generated using 20 additional scaffolds.
Relative to the libraries initialized using benzene, the

Wasserstein distances were ∼2.50 and ∼0.30 in the tree
space and molecular graph space (Figure 6b), respectively. By
comparison, the average Wasserstein distances in tree space
and molecular graph space between samples in successive
cycles in a typical sample-and-dock run were ∼2.70 and ∼0.60,
respectively (Figure 6c). Given that the Wasserstein distances
between the benzene library and the other scaffold libraries
were on par with the distances between successive cycles of
sample-and-dock, we conclude that, for trials of a typical length
(at or above 24 hours), the choice of scaffold does not
significantly alter the distribution with the final libraries. To
visually confirm this, we generated and compared TMAPs of
the libraries generated using different scaffolds. In general, we

found that the TMAP of individual libraries exhibits a high
degree of overlap, consistent with the Wasserstein distance
analysis. Similar analysis also showed that independent libraries
initialized using the same scaffold result in similar libraries, as
do libraries generated using a larger number of designs per
cycle.
It is well known that docking scores contain significant

errors. As such, bootstrapping sampling of chemical space to
docking by identifying the single “best” design cycle based on
the lowest docking score can lead to nonoverlap sampling of
chemical space. To mitigate this, an ensembling approach in
which, instead of a single design, a set or “ensemble” of designs
with the lowest docking scores could be selected after each
cycle and used to seed the next cycle of designs. To assess the
impact of the size of the ensemble on the generated library, we
regenerated libraries with the ensemble size M = 5 and
compared them to the original CDK2 library, i.e., the library
generated with the ensemble M = 1. Overall, the libraries
generated using ensembling at each cycle lead to similar
libraries. For example, the Wasserstein distances in the tree
space and molecular graph space were similar to the values we
obtained when varying the scaffold; they are 2.60 and 0.35,
respectively (Table S2). Furthermore, the libraries exhibit
several overlapping regions within a TMAP (the interactive
TMAP can be accessed here at https://atfrank.github.io/
SampleDock/). However, we observed that the M = 1
sampling explored a larger region of chemical space in the
same number of cycles and, as a result, was able to more
efficiently locate hot-spot regions (Figure S5).
Taken together, our results for CDK2 suggest that starting

from the simple structure and knowledge of the binding site,
generative machine learning models and molecular docking
could be seamlessly interfaced to rapidly construct a target-
specific screening library composed of compounds that are

Figure 8. TMAP of best designs against the Mpro of SAR-CoV-2 target. The TMAPs with (a) our sample-and-dock designs and (b) the top-100
PostEra hits (bright green points) (https://covid.postera.ai/covid/activity_data) are shown. The sample-and-dock designs are color-coded based
on docking scores. The corresponding interactive TMAP can be accessed via https://atfrank.github.io/SampleDock/vis_maps/tmap_mpro.html.
The boxes highlight regions in the TMAP where sample-and-dock designs with low docking scores are near PostEra hits.
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predicted to be both drug-like and synthetically feasible and
are likely to resemble known small molecule modulators of the
target.
SARS-CoV-2 Mpro Library. Next, we applied our sample-

and-dock framework to the main protease (Mpro) of the virus,
SARS-CoV-2. SARS-CoV-2 Mpro processes polypeptides that
are important for viral assembly and, as such, is an attractive
target for developing drugs to treat COVID-19.42,43 To
generate a SARS-CoV-2 Mpro-specific library, we initiated
sample-and-dock calculations starting with benzene as the
reference scaffold and targeting the same site on SARS-CoV-2
Mpro that is occupied by the inhibitor, N3 (PDB: 6Y2F).29 The
active site of SARS-CoV-2 Mpro is composed of five
subpockets, which we denote as P-I, P-II, P-III, P-IV, and P-
V (Figure 7a). Figure 7 shows three representative compounds
within our sample-and-dock SARS-CoV-2 Mpro library.
Inspection of the predicted poses indicates that the three
representative compounds occupied pockets P-I, P-II, and P-IV
(Figure 7a) and could form stabilizing contacts with the
catalytic residues, His41 and Cys145 (Figure 7b) Interestingly,
both SD-2020-1 (QED = 0.51) and SD-2020-2 (QED = 0.59)
contain the peptidyl moiety found in known Mpro inhib-
itors.29,42 In fact, the presence of the peptidyl moiety was a
common feature of many of the compounds that were sampled
during sample-and-dock. On the other hand, SD-2020-3 (QED
= 0.75), a nucleotide-analogue, is an example of one of the
compounds in our library that lacks the peptidyl moiety. The
overall drug-likeness and the lack of the reactive peptidyl
moiety make SD-2020-3 an interesting lead candidate. On the
basis of the results for CDK2, we speculate that the SARS-
CoV-2 Mpro-specific library we generated using our sample-
and-dock approach may contain yet-to-be-explored and
promising lead candidates. Accordingly, we make the library
of Mpro designs fully open to the scientific community with the
hope that it will be explored by medicinal chemists to seed the
design of novel drugs targeting Mpro of SARS-CoV-2 (https://
github.com/atfrank/SARS-CoV-2).
To determine whether the compounds in our virtual SARS-

CoV-2 Mpro library were similar to any known or experimental

drugs, we compared the compounds in our library with
compounds in SuperDRUG2,44 a library composed of FDA-
approved and experimental drugs. Figure 7c shows the six
drugs that exhibited the highest chemical similarity to at least
one compound in our SARS-CoV-2 Mpro library. Of these six,
three are central nervous system drugs, which include
sertraline, a selective serotonin reuptake inhibitor (SSRI)
that in a recent study has been shown to exhibit antiviral
activity against SARS-CoV-2.45 Intriguingly, another SSRI,
fluvoxamine, has recently been identified as a potential
COVID-19 drug and is now in clinical trials.46

Finally, we compared our sample-and-dock designs to the
compounds that others have recently designed, synthesized,
and tested against the SAR-CoV-2 Mpro as part of the PostEra
COVID-19 Moonshot project.47,48 For this comparison, we
generated TMAP using the combined library of our sample-
and-dock designs and the 100 PostEra hits with the lowest
IC50s. Figure 8 reveals that several branches in the TMAP
where low docking scores sample-and-dock designs adjacent to
some of the PostEra hits. Moreover, several of the PostEra hits
exhibit a striking resemblance to designs in our sample-and-
dock libraries (Figure 9).
Though indirect, this result suggests by using the sample-

and-dock pipeline and focusing on the regions of chemical
space with docking scores, we could have isolated regions of
chemical space that contained bioactive small molecule ligand.
On the basis of this result, we envision that the TMAP of our
sample-and-dock library may serve as a guide to identify new
compounds that might also bind to the SARS-CoV-2 Mpro.

SampleDock Software. To facilitate the use of our virtual
library generation method beyond our research group, we have
implemented it as a standalone tool, which we refer to as
SampleDock (https://github.com/atfrank/SampleDock).
SampleDock can be installed using the conda package
management tool. SampleDock takes as input the coordinates
of the receptor in the MOL2 format and a pseudo-ligand
coordinate in the SD format. The pseudo-ligand file is used to
define the location of the binding cavity for which the virtual
library should be generated. Users can also specify as a

Figure 9. Eight sample-and-dock molecules that were most similar to PostEra hits (https://covid.postera.ai/covid/activity_data). The common
sub-sub-structures that were found in the hits and our sample-and-dock designs are highlighted.
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SMILES string of the seed molecule used to initialize library
generation and the score term used to guide exploration of
chemical space during each cycle.
Future Directions. First, we will implement additional

optimization protocols in SampleDock. Currently, Sample-
Dock uses a greedy algorithm; however, other optimization
approaches, for instance, simulated annealing, genetic algo-
rithm, and particle swarm, could be implemented.
Second, we will add support for additional generative models

so that out-of-the-box, SampleDock users will be able to select
from a library of generative models. Finally, we add
functionality to SampleDock that makes it easy for users to
interface the generative model and docking program of their
choice.
Third, while for simplicity, sample-and-dock is currently

initialized using a single framework, and though distributions
of the libraries generated starting from different fragments
show some resemblance (Figure 6), we believe one could
further mitigate the effects of any bias due to the starting
fragment by initializing sample-and-dock using a library of
diverse fragments. Future versions of the SampleDock software
tool will include such functionality to initialize the sample-and-
dock pipeline using a library for fragments rather than a single
fragment.
Fourth, to accelerate sample-and-dock, we will explore the

use of an implicit docking strategy that can reproduce docking
scores based only on the 2D structure ligands, that is, without
explicitly carrying out docking. Such strategies have been
recently implemented,49−51 and they can be used to rapidly
generate preliminary libraries that can then be refined using
full, explicit (or classical) redocking of the best sample-and-
dock designs.
A significant limitation of sample-and-dock is that though

the library it generates may contain viable, drug-like ligands
that bind to the target, selecting them from the many
thousands of compounds in the library remains a nontrivial
task. This is partly due to inherent limitations in the scoring
functions that are used during docking that result in errors in
both pose prediction and binding affinity estimation, both of
which can have detrimental impact on one’s ability to recover
true ligands from decoys. Here, we used the rDock scoring
function to guide exploration of “chemical space”. Though the
scoring function was useful for executing the fast docking
calculations that were required, it is not necessarily appropriate
to prioritize the compounds in the resulting libraries. To filter
the virtual library and prioritize compounds that could be
synthesized and then advance the biochemical testing, we
envision that one could apply, to a subset of the virtual library,
well-established postdocking analysis methods.52 Such meth-
ods may utilize more physically rigorous scoring function,53,54

quantum-mechanical calculations,55 or FEP calculations56 to
re-sort and prioritize the compounds and so could be used to
identify promising molecules in our sample-and-dock libraries.
Alternatively, sample-and-dock libraries could be rescored
using simpler yet high-performing scoring functions,57 such as
molecular interaction fingerprinting58 and interaction graph-
matching.59 These methods are attractive because they are also
fast and thus make an excellent complement to our sample-
and-dock framework.

■ CONCLUSIONS
To summarize, we combined emerging generative modeling
with well-established biophysical modeling to yield a hybrid,

sample-and-dock approach for the structure-guided exploration
of chemical space. Instead of exploring chemical space in a
large and fixed library, our approach facilitates a directed
exploration of the chemical space that is relevant to a specific
site on a given target. Instead of attempting to identify a single
putative hit, each run of our approach generates a collection/
library of compounds that, based on their docking scores, are
likely to bind to the target at a user-specified site. One can then
use sample-and-dock libraries as the input to more elaborate
virtual screening pipelines to select putative hits. The sample-
and-dock pipeline we implemented is also modular and
flexible. Thus, as more robust generative models are developed,
they can be trivially incorporated into our pipeline, as can more
accurate and robust scoring functions and postdocking
methods. In its current form, our sample-and-dock pipeline
can be deployed to construct structure- and target-specific
maps of the “privileged” chemical space for therapeutically
relevant protein and nucleic acid targets. Applying unsuper-
vised learning to sets of structure- and target-specific chemical
space maps could facilitate the emergence of general design
principles that can guide the rational structure-guided design of
biomolecular probe compounds.60
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Mpro can be accessed here at https://atfrank.github.io/
SampleDock/.
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