
Articles
https://doi.org/10.1038/s41587-022-01432-w

1Laboratory of Systems Pharmacology, Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA. 2Department of Biomedical 
Informatics, Harvard Medical School, Boston, MA, USA. 3Nabla Bio, Inc., Boston, MA, USA. 4Department of Computer Science, Columbia University, New 
York, NY, USA. 5Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA. 6Department of Systems 
Biology, Columbia University, New York, NY, USA. 7Department of Systems Biology, Harvard Medical School, Boston, MA, USA. 8These authors contributed 
equally: Ratul Chowdhury, Nazim Bouatta, Surojit Biswas, Christina Floristean. ✉e-mail: nazim_bouatta@hms.harvard.edu; peter_sorger@hms.harvard.edu; 
ma4129@cumc.columbia.edu

Predicting three-dimensional (3D) protein structure from 
amino acid sequence is a major challenge in biophysics of 
practical and theoretical importance. Progress has long relied 

on physics-based methods that estimate energy landscapes and 
dynamically fold proteins within these landscapes1–4. A decade 
ago, the focus shifted to extracting residue–residue contacts from 
co-evolutionary relationships embedded in MSAs5 (Supplementary 
Fig. 1). Algorithms such as the first AlphaFold6 and trRosetta7 use 
deep neural networks to generate distograms able to guide classic 
physics-based folding engines. These algorithms perform substan-
tially better than algorithms based on physical energy models alone. 
More recently, the superior performance of AlphaFold2 (AF2) (ref. 8) 
in folding a wide range of protein targets that were part of the recent 
CASP14 prediction challenge shows that, when MSAs are available, 
machine learning (ML)–based methods can predict protein struc-
ture with sufficient accuracy to complement X-ray crystallography, 
cryogenic electron microscopy and nuclear magnetic resonance 
(NMR) as a practical means to determine structures of interest.

Predicting the structures of single sequences using ML nonethe-
less remains a challenge: the requirement in AF2 for co-evolutionary 
information from MSAs makes it less performant with proteins 
that lack sequence homologs, currently estimated at ~20% of all 
metagenomic protein sequences9 and ~11% of eukaryotic and viral 
proteins10. Protein design and studies quantifying the effects of 
sequence variation on function11 or immunogenicity12 also require 
single-sequence structure prediction. More fundamentally, the 
physical process of polypeptide folding in solution is driven solely 
by the chemical properties of that chain and its interaction with 
solvent (excluding, for the moment, proteins that require folding 
co-factors). An algorithm that predicts structure directly from a sin-

gle sequence is—like energy-based folding engines1–4—closer to the 
real physical process than an algorithm that uses MSAs. We specu-
late that ML algorithms able to fold proteins from single sequences 
will ultimately provide new understanding of protein biophysics.

Structure prediction algorithms that are fast are of great practi-
cal value because they make efficient exploration of sequence space 
possible, particularly in design applications13. Fast predictions for 
large numbers of long proteins would enable many practical appli-
cations in enzymology, therapeutics and chemical engineering, 
including designing new functions14–16, raising thermostability17, 
altering pH sensitivity18 and increasing compatibility with organic 
solvents19. Efficient and accurate structure prediction is also valuable 
in the case of orphan proteins, many of which are thought to play 
a role in taxonomically restricted and lineage-specific adaptations. 
OSP24, for example, is an orphan virulence factor for the wheat 
pathogen Fusarium graminearum that controls host immunity by 
regulating proteasomal degradation of a conserved signal transduc-
tion kinase20. It is one of many orphan genes found in fungi, plants, 
insects and other organisms21 for which MSAs are not available.

We previously described an end-to-end differentiable, ML-based 
RGN (hereafter RGN1)22 that predicts protein structure from 
position-specific scoring matrices (PSSMs) derived from MSAs; 
related end-to-end approaches have since been reported23–25. RGN1 
PSSM structure relationships are parameterized as torsion angles 
between adjacent residues, making it possible to sequentially posi-
tion the protein backbone in 3D space (backbone geometry com-
prises the arrangement of N, Cα and C′ atoms for each amino 
acid). All RGN1 components are differentiable, and the system can, 
therefore, be optimized from end to end to minimize prediction 
error (as measured by distance-based root mean squared deviation 
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(dRMSD)). Although RGN1 does not rely on the co-evolutionary 
information used to generate MSAs, a requirement for PSSMs 
necessitates that multiple homologous sequences be available.

Here we describe an end-to-end differentiable system, RGN2 
(Fig. 1), that predicts protein structure from single protein sequences 
by using a protein language model (AminoBERT). Language mod-
els were first developed as a means to extract semantic information 
from a sequence of words (a key requirement for natural language 
processing)26. In the context of proteins, AminoBERT aims to cap-
ture the latent information in a string of amino acids that implicitly 
specifies protein structure. RGN2 also makes use of a natural way of 
describing polypeptide geometry that is rotationally and translation-
ally invariant at the level of the polypeptide as a whole. This involves 
using the Frenet–Serret formulas to embed a reference frame at each 
Cα carbon; the backbone is then easily constructed by a series of 
transformations. In this paper, we describe the implementation and 
training of AminoBERT, the use of Frenet–Serret formulas in RGN2 
and a performance assessment for natural and designed proteins 
with no significant sequence homologs. We found that, on average, 
the Global Distance Test–Total Score (GDT_TS) achieved by RGN2 
is higher than AF2 (ref. 8) and RoseTTAFold (RF)27, even though 
AF2/RF can achieve higher absolute GDT_TS scores than RGN2 on 
naturally occurring orphan proteins without known homologs and 
de novo designed proteins. Although RGN2 is not as performant as 
MSA-based methods for proteins that permit use of MSAs, RGN2 is 
up to six orders of magnitude faster, enabling efficient exploration 
of sequence and structure landscapes.

Results
RGN2 and AminoBERT models. RGN2 involves two primary 
innovations relative to RGN1 and other ML-based structure pre-
diction approaches. First, it uses amino acid sequence itself as the 
primary input as opposed to a PSSM, making it possible to pre-
dict structure from a single sequence. In the absence of a PSSM 
or MSA, latent information on the relationship between protein 
sequence (as a whole) and 3D structure is captured using a protein 
language model that we termed AminoBERT. Second, rather than 
describe the geometry of protein backbones as a sequence of torsion 
angles, RGN2 uses a simpler approach based on the Frenet–Serret 
formulas; these formulas describe motion along a curve using the  

reference frame of the curve itself. This approach to protein geom-
etry is inherently translationally and rotationally invariant, a key 
property of polypeptides in solution. We refined structures pre-
dicted by RGN2 using an AF2Rank-based protocol28 that imputes 
the backbone and sidechain atoms. The refinement process con-
tains steps that are non-differentiable but improve the quality of 
predicted structures.

Language models were originally developed for natural language 
processing and operate on a simple but powerful principle: they 
acquire linguistic understanding by learning to fill in missing words 
in a sentence, akin to a sentence completion task in standardized 
tests. By performing this task across large text corpora, language 
models develop reasoning capabilities. The Bidirectional Encoder 
Representations from Transformers (BERT) model29 instantiated 
this principle using transformers, a class of neural networks in which 
attention is the primary component of the learning system30. In a 
transformer, each token in the input sentence can ‘attend’ to all other 
tokens through the exchange of activation patterns correspond-
ing to the intermediate outputs of neurons in the neural network. 
In AminoBERT, we use the same approach, substituting protein 
sequences for sentences and using amino acid residues as tokens.

To generate the AminoBERT language model, we trained a 
12-layer transformer using ~250 million natural protein sequences 
obtained from the UniParc sequence database31. To enhance the 
capture of information in full protein sequences, we introduced two 
training objectives not part of BERT or previously reported protein 
language models26,32–36. First, 2–8 contiguous residues were masked 
simultaneously in each sequence (similar to the ProtTrans37 lan-
guage model), making the reconstruction task harder and empha-
sizing learning from global, rather than local, context. Second, 
‘chunk permutation’ was used to swap contiguous protein seg-
ments; chunk permutations preserve local sequence information 
but disrupt global coherence. Training AminoBERT to identify 
these permutations is another way of encouraging the transformer 
to discover information from the protein sequence as a whole. The 
AminoBERT module of RGN2 is trained independently of the 
geometry module in a self-supervised manner without fine-tuning 
(Methods).

In RGN2, we parameterized backbone geometry using the dis-
crete version of the Frenet–Serret formulas for one-dimensional 
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(1D) curves38; similar ideas were considered in ref. 39. In this parame-
terization, each residue is represented by its Cα atom and an oriented 
reference frame centered on that atom. Local residue geometry was 
described by a single rotation matrix relating the preceding frame 
to the current one, which is the geometrical object that RGN2 pre-
dicts at each residue position. This rotationally and translationally 
invariant parameterization has two advantages over our previous 
use of torsion angles in RGN1. First, it ensured that specifying a 
single biophysical parameter, namely the sequential Cα−Cα distance 
of ~3.8 Å (which corresponds to a trans conformation), results in 
only physically realizable local geometries. This overcomes a limita-
tion of RGN1, which yielded chemically unrealistic values for some 
torsion angles. Second, it reduced by ~10-fold the computational 
cost of chain extension calculations, which often dominates RGN 
training and inference times (Methods).

RGN2 training was performed using both the ProteinNet12 
dataset40 and a smaller dataset comprised solely of single protein 
domains derived from the ASTRAL SCOPe dataset (version 1.75)41. 
Because we observed no detectable difference between the two, all 
results in this paper derive from the smaller dataset, as it required 
less training time.

Predicting structures of proteins with no homologs. To assess 
how well RGN2 predicts the structures of orphan proteins having 
no known sequence homologs (Supplementary Figs. 2 and 3), we 
compared it to AF2 (ref. 8) and RF27, currently the best publicly 
available methods. In addition to UniRef30, we used two other 
complementary databases (PDB70 and MGnify) to prepare a list of 
77 proteins with the following properties: (1) they are at least 20 
residues long; (2) they are orphans (that is, MSA depth = 1) across 
all three datasets simultaneously; and (3) they have solved struc-
tures in the Protein Data Bank (PDB)42 (see Methods for orphan 
test set construction details). We note that more than 85% of these 
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sequences are included in the training sets for AF2 and RF, which 
may result in an overestimate of the accuracy of these methods. We 
predicted the structures of orphan proteins using all methods and 
assessed accuracy with respect to experimentally determined struc-
tures (Fig. 2a) using GDT_TS (which roughly captures the fraction 
of the structure that is correctly predicted) and dRMSD. We found 
that RGN2 outperformed AF2 and RF on both metrics in 44% and 
65% of cases, respectively (these correspond to the top-left quadrant 
in Fig. 2b). In 31% and 20% of cases, AF2 and RF outperformed 
RGN2 on both metrics, respectively; split results were obtained in 
the remaining cases. When we computed differences in error met-
rics obtained for different prediction methods, we found that RGN2 
outperformed AF2 and RF by an average ΔdRMSD of 0.65 Å and 
1.99 Å and ΔGDT_TS of 5.34 and 12.4 units, respectively. When the 
same analysis was applied only to structures that had been deter-
mined by X-ray crystallography or electron microscopy (that is, 
80% of the targets shown in light gray in Fig. 2b), RGN2 exhibited 
a similar improvement over AF2 and RF: an average ΔdRMSD of 
0.66 Å and 2.25 Å and ΔGDT_TS of 5.56 and 13.5 units, respectively.

To investigate the structural basis for these differences in per-
formance, we applied the DSSP algorithm43 to determine the frac-
tion of each secondary structure element (helical-alpha, 5 and 
3/10; beta-strand; bridge; and unstructured loops, bends and 
hydrogen-bonded turns) in PDB structures for the orphan protein 
test set (Fig. 3a). We found that RGN2 outperformed all other meth-
ods on proteins rich in single helices and bends or hydrogen-bonded 
turns interspersed with helices, whereas other methods—AF2 
in particular—better predicted targets with high fractions of 
beta-strand and beta-bridges (such as hairpins). Performance on 
the remaining ~25% targets was split between RGN2 and com-
peting methods (Fig. 2b). We also examined performance as a 
function of protein length and found that RGN2 generally outper-
formed AF2 on longer helical proteins. One possible explanation 
for these findings is that the Frenet–Serret geometry used by RGN2 
is based on two local parameters (curvature and torsion), and these  

parameters have fixed values for helices. Thus, RGN2 has an intrin-
sic ability to learn helical patterns.

In Fig. 3b–d, we show examples of structures for which RGN2 
outperformed AF2. For example, PDB structures 6A3A (Fig. 3b) 
and 7AL0 (Fig. 3d) are largely alpha-helical, where the helices 
comprise 75% and 94% of the structure, respectively. RGN2 cor-
rectly predicts the challenging, less-structured bends and turns in 
these proteins, yielding 12.5-point and 4.04-point gains in GDT_
TS and ΔdRMSD > 1.47 Å and 0.37 Å over AF2, respectively. A 
protein for which neither model succeeded across both metrics, 
6F0F, has an alpha-helical base with loops at both ends (Fig. 3c). 
RGN2 accurately predicted the majority of the helical domain 
of 6F0F but failed to fully capture the loop regions; in contrast,  
AF2 deviates more from the main helix but more closely follows 
the direction of the ending loop. For RGN2, this contributed 
to an 2.13-point increase in GDT_TS and a 0.76-Å increase in  
dRMSD, respectively.

Predicting the structures of de novo (designed) proteins. We 
evaluated the accuracy of RGN2 on a test set of 149 synthetic pro-
teins that were originally designed de novo using computation-
ally parametrized energy functions, such as Rosetta and Amber; 
these proteins are expected to be well-suited to prediction by RF. 
Many of these proteins are intended to have applications in thera-
peutic development, such as novel antimicrobial peptides. This 
test set comprises all known designed proteins that are not part of 
the AF2 training set, as ascertained by PDB deposition date and 
filtered to have an ‘organism’ annotation of ‘synthetic construct’. 
This filter helps to eliminate ambiguous de novo protein entries 
(for example, 7NBI), which are synthesized single-point mutants 
of known proteins. As before, we assessed prediction accuracy 
using dRMSD and GDT_TS. We found that RGN2 outperformed 
AF2 and RF on both metrics in 47% and 66% of cases, respec-
tively (Fig. 4). On average, RGN2 outperformed AF2 and RF on 
these targets, with dRMSD and GDT_TS gains of 12.4 Å and 17.1 

Table 1 | A, A quantitative comparison of average tM scores and precision of top l/2, l/5 and l/10 contacts and contacts within 
alpha-helical and beta-type folds across 77 orphan proteins and 149 de novo proteins, using eSM-1b and RGN2. B, Comparison of 
prediction times among RGN2 and AF2, RF and trRosetta across 330 targets spanning our orphan and de novo protein datasets. 
RGN2 predictions were performed in batches with maximum permissible batch size set to 128 targets. the trRosetta MSA generation 
step was not used because none of the targets had known homologous proteins

A

targets Method top l/x Structural Classes

l/2 l/5 l/10 alpha-helix  beta-type

77 orphans RGN2 29.3 52.3 64.4 86.5 20.3

ESM-1b 30.1 51.8 69.6 84.1 49.5

149 de novo RGN2 35.6 55.1 61.8 87.9 23.3

ESM-1b 29.3 54.5 68.4 84.1 39.2

B

Protein length 
(L) bins (no. 
residues)

total, 
targets

Mean protein 
length (no. 
residues)

Mean trRosetta prediction 
time per structure (s)

Mean AF2 
prediction time 
(s)

Mean RF 
prediction time 
(s)

Mean RGN2 
prediction time 
(ms)

Mean RGN2 
prediction + 
refinement time 
(s)

Distogram 3D structure

0 < L ≤ 100 184 37.5 1,768 1,004 831.5 412.6 2.7 132.99

100 < L ≤ 200 93 148.7 2,791 1,927 851.6 408.3 2.2 139.89

200 < L ≤ 300 28 258.3 2,877 1,752 828.4 492.7 3.1 154.34

300 < L ≤ 400 17 333.4 3,647 2,140 825.6 501.6 5.7 179.52

400 > L 8 460.5 4,012 3,011 841.6 498.6 5.9 192.53
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and of 1.80 Å and 2.33, respectively (Fig. 4). The same analysis 
applied only to structures determined by X-ray crystallography or  
electron microscopy (that is, 66% of the targets shown in light  
gray in Fig. 4b) yielded similar improvements in RGN2 relative to 
AF2 and RF: an average ΔdRMSD of 2.38 Å and 2.65 Å and ΔGDT_
TS of 15.5 and 16.9 units, respectively. We conclude that RGN2 
can better predict sequence–structure relationships for helical 
regions of de novo protein space than all competing methods (Fig. 
5) but that beta-sheet prediction from single sequences remains  
a challenge.

As an illustration of how RGN2 improves on and comple-
ments AF2 predictions, we show in Fig. 5c the PDB structure 
6XNS. Similarly to orphans with largely helical secondary struc-
tural composition, RGN2 predicts this target more accurately than 
AF2 (ΔdRMSD = –14.9 Å and GDT_TS = +44.0 ΔGDT_TS). In  
Fig. 5b,d, we show predicted structures of two different alpha/beta 
targets (PDB accession codes 6WRW and 6XH5). For these targets, 
RGN2 more accurately captures the ordered secondary structured 
elements and hydrogen-bonded turns, resulting in 51.5-point and 
29.2-point gains in GDT_TS and ΔdRMSD > 4.96 Å and 8.29 Å over 
AF2, respectively. Similar observations suggest that future hybrid 
methods using both a language model and MSAs may outperform 
either method alone.

Contact prediction precision. We performed a comparative contact 
prediction analysis between RGN2 and ESM-1b first on our revised 
set of 124 de novo protein targets (that is, those >20 amino acids 
long with no homolog across the PDB70, MGnify and UniRef90 
datasets) and our set of designed proteins (Table 1A). These tables 
show the percentage precision of top L/2, L/5 and L/10 contacts. 
We note that ESM-1b outperforms RGN2 on the beta-rich contacts, 
but, for alpha-rich contacts, RGN2 remains marginally ahead. We 
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RGN2 outperforms the competing method on both metrics, and vice versa 
for the bottom-right quadrant. The other two quadrants (white) indicate 
targets where there is no clear winner, as the two metrics disagree. The 
structures of 34% of the targets were determined experimentally using 
NMR and are denoted with dark gray markers, whereas the remaining 
66% of targets were determined using X-ray crystallography or electron 
microscopy. c, Head-to-head comparisons of absolute GDT_TS and 
dRMSD scores for RGN2 and AF2 are shown broken down by experimental 
method (NMR and X-ray crystallography/electron microscopy). RGN2 
outperforms AF2 for proteins in the upper purple triangle, whereas AF2 
outperforms RGN2 for targets in the lower green triangle. XRD, X-ray 
crystallography.

a

b c d

Helices
Beta fragments
Loops

Targets where RGN2 outperforms AF2 AF2 better Neither

47%/149 targets 24%/149

0

515

PDB AF2 
RGN2

∆dRMSD = –4.96 (Å)
∆GDT_TS = +51.5

RGN2AF2 

PDB

∆dRMSD = –14.9 (Å)
∆GDT_TS = +44.0

PDB 6WRW
(88 aa)

PDB 6XNS
(340 aa)

RGN2

AF2 

PDB

∆dRMSD = –8.29 (Å)
∆GDT_TS = +29.2

PDB 6XH5
(359 aa)

S
eq

ue
nc

e 
le

ng
th

Fig. 5 | Comparing RGN2 and AF2 structure predictions for designed 
proteins. a, Stacked bar chart shows 149 de novo designed proteins. Bar 
height indicates protein length. b, Overlaid ribbon diagrams of PDB entries 
(with increasing protein length) 6WRW, 6XNS and 6XH5 (white), and 
RGN2 (purple) and AF2 (yellow) predicted structures are visually depicted 
to show how RGN2 outperforms AF2 for each of these cases. aa, amino 
acid.

NAtuRe BioteChNoloGy | www.nature.com/naturebiotechnology

https://www.rcsb.org/structure/6XNS
https://www.rcsb.org/structure/6WRW
https://www.rcsb.org/structure/6XH5
https://www.rcsb.org/structure/6WRW
https://www.rcsb.org/structure/6XNS
https://www.rcsb.org/structure/6XH5
http://www.nature.com/naturebiotechnology


Articles NATuRE BIOTECHNOlOGy

note that gains in contact prediction accuracy do not necessarily 
translate to improved tertiary structure prediction44.

RGN2 prediction speed. Rapid prediction of protein structure is 
essential for tasks such as protein design and analysis of allelic varia-
tion or disease mutations. By virtue of being end-to-end differen-
tiable, RGN2 predicts unrefined structures using fast neural network 
operations and does not require physics-based conformational sam-
pling to assemble a folded chain. Because it operates directly on single 
sequences, RGN2 also avoids expensive MSA calculations. To quantify 
these benefits, we compared the speed of RGN2 and other methods 
on orphan and de novo protein datasets of varying lengths (breaking 
down computation time by prediction stage; Table 1B). In MSA-based 
methods, MSA generation scaled linearly with MSA depth (that is, the 
number of homologous sequences used), whereas distogram predic-
tion (by trRosetta) scaled quadratically with protein length. AF2 pre-
dictions scale cubically with protein length. In contrast, RGN2 scales 
linearly with protein length, and both template-free and MSA-free 
implementations of AF2 and RF were >105-fold slower than RGN2. 
In the absence of post-prediction refinement, RGN2 is up to 106-fold 
faster, even for relatively short proteins. Adding physics-based refine-
ment increased compute cost for all methods, but, even so, RGN2 
remains the fastest available method. Of interest, even when MSA 
generation is discounted, neural network–based inference for AF2 
and RF remains much slower than RGN2, inclusive of post-prediction 
refinement. This gap will only widen for design tasks involving longer 
proteins, whose chemical synthesis is increasingly becoming feasible45. 
Thus, fast prediction is a benefit of using a protein language model such  
as AminoBERT.

Discussion
RGN2 represents one of the first attempts to use ML to predict pro-
tein structure from a single sequence. This is computationally effi-
cient and has many advantages in the case of orphan and designed 
proteins for which generation of multiple sequence alignment is 
often not possible. RGN2 accomplishes this by fusing a protein lan-
guage model (AminoBERT) with a simple and intuitive approach to 
parameterizing Cα backbone geometry based on the Frenet–Serret 
formulas. Whereas most recent advances in ML-based structure 
prediction have relied on MSAs5 to learn latent information about 
folding, AminoBERT learns this information from proteins without 
alignment. Training in this case involves sequences with masked 
residues and block permutations. We speculate that the latent space 
of the language model also captures recurrent evolutionary rela-
tionships46. The use of Frenet–Serret formulas in RGN2 addresses 
the requirement that proteins exhibit translational and rotational 
invariance. From a practical standpoint, the speed and accuracy of 
RGN2 shows that language models are effective at learning struc-
tural information from primary sequence while having the ability to 
extrapolate beyond known proteins, thereby enabling effective pre-
diction of orphan and designed proteins. Nonetheless, methods that 
use MSA information (when it is available) often outperform RGN2, 
most notably AF2 when assessed on proteins in the ‘Free Modeling’ 
category of CASP14 (Supplementary Fig. 4). Thus, language models 
are not a substitute for MSAs but, rather, a complementary way to 
get at the latent rules governing protein folding. We speculate that 
folding systems that use both language models and MSAs will be 
more performative than systems using one approach alone.

Transformers and their embodiment of local and distant atten-
tion is a key feature of language models such as AminoBERT. Very 
large transformer-based models trained on hundreds of millions 
and potentially billions of protein sequences are increasingly avail-
able26,35,36, and the scaling previously observed in natural language 
applications47 makes it likely that the performance of RGN2 and 
similar methods will continue to improve and become broadly 
performative over intrinsically disordered proteins and cyclic  

peptides as well (Supplementary Fig. 5). AF2 also exploits attention 
mechanisms based on transformers to capture the latent informa-
tion in MSAs. Similarly, the self-supervised MSA transformer48 
uses a related attention strategy that attends to both positions and 
sequences in an MSA and achieves state-of-the-art contact predic-
tion accuracy. Architectures merging language models and MSAs 
are also likely to benefit from augmentation from high-confidence 
structures found in the AlphaFold Database8. Finally, training on 
experimental data is almost certain to be invaluable in selected appli-
cations requiring high accuracy within members of multi-protein 
families, such as predicting structural variation within kinases or G 
protein–coupled receptors.

We consider RGN2 to be a first step in the development of meth-
ods able to compute sequence-to-structure maps without a require-
ment for explicit evolutionary information. One limitation of the 
current RGN2 implementation to be addressed by future systems is 
that the immediate output of the recurrent geometric network only 
constrains local dependencies between Cα atoms (curvature and 
torsion angles), resulting in sequential reconstruction of backbone 
geometry. Allowing the network to reason directly on arbitrary 
pairwise dependencies throughout the structure, and using a better 
inductive prior than immediate contact, may further improve the 
quality of model predictions. A second limitation is that refinement 
in RGN2 is not part of an end-to-end implementation; refinement 
via a 3D rotationally and translationally equivariant neural net-
work would be more efficient and likely yield better-quality struc-
tures. Currently, AF2Rank-based refinement results in an average 
increase of 24.7 for GDT_TS scores and an average decrease of 2.3 Å 
for dRMSD values, relative to predictions from RGN2 alone, as 
evaluated using all 225 orphan and de novo targets described in this 
study (Supplementary Fig. 6).

It has been known since Anfinsen’s refolding experiments that 
single polypeptide chains contain the information needed to specify 
fold49. The demonstration that a language model can learn informa-
tion on structure directly from protein sequences and then guide 
accurate prediction of an unaligned protein suggests that RGN2 
behaves in a manner that is more similar to the physical process of 
protein folding than MSA-based methods. Transformers can learn 
structural encodings present in both local and distant features of a 
sequence, which is reflective of the role played by local residues in 
the molten globule stage and distant residues in the 3D protein fold. 
Moreover, language models learned by deep neural networks are 
readily formulated in a maximum entropy framework50. The physi-
cal process of protein folding is also entropically driven, potentially 
suggesting a means to compare the two. A fusion of biophysical 
and learning-based perspectives may ultimately prove the key to 
direct sequence-to-structure prediction from single polypeptides 
at experimental accuracy and for understanding folding energetics 
and dynamics.
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Methods
AminoBERT summary. AminoBERT is a 12-layer transformer where each layer is 
composed of 12 attention heads. It is trained to distill protein sequence semantics 
from ~260 million natural protein sequences obtained from the UniParc sequence 
database31 (downloaded on 19 May 2019).

During training, each sequence is fed to AminoBERT according to the 
following algorithm:

 1. With probability 0.3, select sequence for chunk permutation, and, with prob-
ability 0.7, select sequence for masked language modeling.

 2. If sequence was selected for chunk permutation, then: with probability 0.35, 
chunk permute, or else (with probability 0.65) leave the sequence unmodified.

 3. Else if the sequence was selected for masked language modeling, then: with 
probability 0.3, introduce 0.15 × sequence_length masks into the sequence 
with clumping, or else (with probability 0.7) introduce the same number of 
masks into the sequence randomly across the length of the sequence (stand-
ard masked language modeling).

The loss for an individual sequence (seq) is given by:

Loss (seq) = I [seq is chunk permuted] × chunk_permutation_loss(seq)

+ (1 − I[seq is globally perturbed] × masked_lm_loss(seq)

where I[x] is the indicator of the event x and returns 1 if x is true and 0 if x is false. 
Chunk_permutation_loss(seq) is a standard cross-entropy loss reflecting the 
classification accuracy of predicting whether seq has been chunk permuted. Finally, 
masked_lm_loss(seq) is the standard masked language modeling loss as previously 
described in Devlin et al.29. Note that mask clumping does not affect how the loss 
is calculated.

Chunk permutation is performed by first sampling an integer x uniformly 
between 2 and 10, inclusively. The sequence is then randomly split into x 
equal-sized fragments, which are subsequently shuffled and rejoined.

Mask clumping is performed as follows:

 1. Sample an integer clump_size ~ Poisson (2.5) + 1
 2. Let n_mask = 0.15 × sequence_length. Randomly select n_mask/clump_size 

positions in the sequence around which to introduce a set of clump_size 
contiguous masks

AminoBERT architecture. Each multi-headed attention layer in AminoBERT 
contains 12 attention heads, each with hidden size 768. The output dimension of the 
feed-forward unit at the end of each attention layer is 3,072. As done in BERT29, we 
prepend a [CLS] token at the beginning of each sequence, for which an encoding is 
maintained through all layers of the AminoBERT transformer. Each sequence was 
padded or otherwise clipped to length 1,024 (including the [CLS] token).

For chunk permutation classification, the final hidden vector of the [CLS] 
token is fed through another feed-forward layer of output dimension 768, 
followed by a final feed-forward layer of output dimension 2, which are the 
logits corresponding to whether the sequence is chunk permuted or not. Masked 
language modeling loss calculations are set up as described in Devlin et al.29.

AminoBERT training procedure. AminoBERT was trained with batch size 
3,072 for 1,100,000 steps, which is approximately 13 epochs over the 260 million 
sequence corpus. For our optimizer, we used Adam with a learning rate of 1 × 10−4, 
β1 = 0.9, β2 = 0.999, epsilon = 1 × 10−6, L2 weight decay of 0.01, learning rate 
warmup over the first 20,000 steps and linear decay of the learning rate. We used 
a dropout probability of 0.1 on all layers and used GELU activations as done for 
BERT. Training was performed on a 512-core TPU pod for approximately 1 week.

Geometry module. The geometry of the protein backbone as summarized by 
the Cα trace can be thought of as a 1D discrete open curve, characterized by a 
bond and torsion angle at each residue. Following Niemi et al.38, the starting point 
for describing such discrete curves is to assign a frame, a triplet of orthonormal 
vectors, to each Cα atom. If we denote by ri the vector characterizing the position 
of a Cα atom at the i-th vertex, we could then define a unit tangent vector along an 
edge connecting two consecutive Cα atoms

ti =
ri+1 − ri
|ri+1 − ri|

For assigning frames to each i-th Cα atom, we need two extra vectors, the 
binormal and normal vectors defined as follows:

bi =
ti−1 × ti
|ti−1 × ti|

ni = bi × ti

Although, for a protein (in a given orientation), the tangent vector is uniquely 
defined, the normal and binormal vectors are arbitrary. Indeed, when assigning 

frames to each residue, we could take any arbitrary orthogonal basis on the normal 
plane to the tangent vector. Such arbitrariness does not affect our strategy of 
predicting 3D structures starting from bond and torsion angles.

To derive the equivalent of the Frenet–Serret formulas—which describe the 
geometry of continuous and differentiable 1D curves—for the discrete case, we 
need to relate two consecutive frames along the protein backbone in terms of 
rotation matrices:
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In three dimensions, rotation matrices are, in general, parametrized in terms 
of three Euler angles. However, in our case, the rotation matrices relating two 
consecutive frames are fully characterized by only two angles, a bond angle ψ and a 
torsion angle θ, as the third Euler angle vanishes, reflecting the following condition 
bi+1.ti = 0. We can now write the equivalent of the Frenet–Serret formulas for the 
discrete case:
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The bond and torsion angles are defined by the following relations:

cos ψ i+1,i = ti+1.ti

cos θi+1,i = bi+1.bi

We now turn to backbone reconstruction starting from bond and torsion 
angles. First, using tangent vectors along the backbone edges, we can reconstruct 
all Cα atom positions, and, thus, the full protein backbone in the Cα trace, by using 
the following relation:

rk =

k−1
∑

i=0
|ri+1 − ri| .ti

where |ri+1 − ri| is the length of the virtual bonds connecting two consecutive Cα 
atoms. In most cases, the average virtual bond length is ~3.8 Å, which corresponds 
to trans conformations. In terms of the familiar torsion angles ϕ, ψ and ω, those 
conformations are achieved for ω ~ π. For cis conformations, mainly involving 
proline residues, the virtual bond length is ~3.0 Å (and it corresponds to ω ~ 0). In 
RGN2, for backbone reconstruction, we impose the condition that the virtual bond 
length is strictly equal to 3.8 Å, and, for reconstructing the backbone, we use the 
following relation:

rk =

k−1
∑

i=0
3.8 × ti

The intuition behind the previous equation is the idea of a moving observer 
along the protein backbone. We could think of the tangent vector ti as the velocity of 
the observer along a given edge and the constant virtual bond length as the effective 
time spent for travelling along the edge. The only freedom allowed for such observer 
is to abruptly change the direction of the velocity vector at each vertex.

The model outputs bond and torsion angles. By centering the first Cα atom 
of the protein backbone at the origin of our coordinate system, we sequentially 
reconstruct all the Cα atom coordinates using the following relation:
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Data preparation for comparison with trRosetta. Performance of RGN2 was 
compared against trRosetta across two sets of non-homologous proteins: (1) 
129 orphans from the Uniclust30 database51 and (2) 35 de novo proteins by Xu 
et al.52. Both sets were filtered to ensure no overlap with the training sets of RGN2 
and trRosetta. Whereas RGN2 is trained on the ASTRAL SCOPe (version 1.75) 
dataset41, trRosetta was trained on a set of 15,051 single-chain proteins (released 
before 1 May 2018).

Structure prediction with trRosetta, AF2 and RF. Conventional trRosetta-based 
structure prediction involves first feeding the input sequence through a deep 
MSA generation step. For orphans and de novo proteins without any sequence 
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homologs, the MSA includes only the original query sequence. Next, the MSA is 
used by the trRosetta neural network to predict a distogram (and orientogram) 
that captures inter-residue (C𝛼–C𝛼 and Cβ–Cβ) distances and orientations. This 
information is subsequently used by a final Rosetta-based refinement module. 
This module first threads a naive sequence of polyalanines of length equaling the 
target protein that maximally obeys the distance and orientation constraints. After 
sidechain imputation that reflects the original sequence, multiple steps, including 
clash elimination, rotamer repacking and energy minimization, are performed to 
identify the lowest energy structure.

AF2 and RF predictions were performed without MSAs for both our orphan 
and de novo target proteins. Our predictions were made using their respective 
official Google Colab notebooks, and all AF2 predictions were obtained from 
Model 1.

Structure refinement in RGN2. Raw predictions from RGN2 contain a single 
C𝛼 trace of the target protein. The remaining backbone and sidechain atoms 
are initially constructed using the unrefined full-atom model generated by 
ModRefiner53. This structure is then fine-tuned based on the methods described 
in AF2Rank28, where the RGN2-predicted structure is supplied as a template 
to AlphaFold2 with no additional coevolutionary information. The sequence 
associated with the template is replaced with ‘gap’ tokens, and the input structure 
is modified such that Cβ atoms are added to all glycine residues and all side chain 
atoms except Cβ are masked. The target sequence and RGN2 template are passed to 
AlphaFold2 for one recycling iteration to obtain the final predicted structure54.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The AminoBERT module was trained using the UniParc sequence database 
(https://www.uniprot.org/help/uniparc). Homologous sequence searches to 
determine orphan sequences were performed across UniRef90 (https://ftp.uniprot.
org/pub/databases/uniprot/uniref/uniref90/), PDB70 (http://prodata.swmed.edu/
procain/info/database.html) and MGnify (https://www.ebi.ac.uk/metagenomics/) 
metagenomic sequence alignment datasets. The six PDB structures discussed in 
detail in the article (5FKP, 2KWZ, 6E5N, 2L96, 5UP5 and 7KBQ) were all sourced 
from the Protein Data Bank.

Code availability
RGN2 is available freely as a standalone tool from https://github.com/aqlaboratory/
rgn2. Users can make structure predictions using a Python3-based web user interface 
by uploading the protein sequence in FASTA format (https://colab.research.google.
com/github/aqlaboratory/rgn2/blob/master/rgn2_prediction.ipynb).
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